Nuprl Lemma : csm-canonical-section-face-type
∀[I,K:fset(ℕ)]. ∀[f:K ⟶ I]. ∀[phi:𝔽(I)].
  (canonical-section(();𝔽;K;⋅;f(phi)) = (canonical-section(();𝔽;I;⋅;phi))<f> ∈ {formal-cube(K) ⊢ _:𝔽})
Proof
Definitions occuring in Statement : 
face-type: 𝔽
, 
csm-ap-term: (t)s
, 
canonical-section: canonical-section(Gamma;A;I;rho;a)
, 
cubical-term: {X ⊢ _:A}
, 
face-presheaf: 𝔽
, 
context-map: <rho>
, 
trivial-cube-set: ()
, 
formal-cube: formal-cube(I)
, 
cube-set-restriction: f(s)
, 
I_cube: A(I)
, 
names-hom: I ⟶ J
, 
fset: fset(T)
, 
nat: ℕ
, 
it: ⋅
, 
uall: ∀[x:A]. B[x]
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
top: Top
, 
subtype_rel: A ⊆r B
, 
unit: Unit
, 
I_cube: A(I)
, 
functor-ob: ob(F)
, 
pi1: fst(t)
, 
trivial-cube-set: ()
, 
face-presheaf: 𝔽
, 
lattice-point: Point(l)
, 
record-select: r.x
, 
face_lattice: face_lattice(I)
, 
face-lattice: face-lattice(T;eq)
, 
free-dist-lattice-with-constraints: free-dist-lattice-with-constraints(T;eq;x.Cs[x])
, 
constrained-antichain-lattice: constrained-antichain-lattice(T;eq;P)
, 
mk-bounded-distributive-lattice: mk-bounded-distributive-lattice, 
mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o)
, 
record-update: r[x := v]
, 
ifthenelse: if b then t else f fi 
, 
eq_atom: x =a y
, 
bfalse: ff
, 
btrue: tt
, 
cubical-type-at: A(a)
, 
face-type: 𝔽
, 
constant-cubical-type: (X)
, 
squash: ↓T
, 
true: True
, 
all: ∀x:A. B[x]
, 
names-hom: I ⟶ J
, 
formal-cube: formal-cube(I)
, 
uimplies: b supposing a
, 
canonical-section: canonical-section(Gamma;A;I;rho;a)
, 
csm-ap-term: (t)s
, 
context-map: <rho>
, 
csm-ap: (s)x
, 
bdd-distributive-lattice: BoundedDistributiveLattice
, 
so_lambda: λ2x.t[x]
, 
prop: ℙ
, 
and: P ∧ Q
, 
so_apply: x[s]
, 
bounded-lattice-hom: Hom(l1;l2)
, 
lattice-hom: Hom(l1;l2)
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
implies: P 
⇒ Q
Lemmas referenced : 
cubical-term-equal2, 
formal-cube_wf, 
face-type_wf, 
csm-face-type, 
cubical-term_wf, 
canonical-section_wf, 
trivial-cube-set_wf, 
it_wf, 
subtype_rel_self, 
I_cube_wf, 
cube-set-restriction_wf, 
face-presheaf_wf, 
cubical-type-at_wf_face-type, 
csm-ap-term_wf, 
csm-ap-type_wf, 
context-map_wf, 
I_cube_pair_redex_lemma, 
names-hom_wf, 
fset_wf, 
nat_wf, 
cube_set_restriction_pair_lemma, 
face-type-ap-morph, 
arrow_pair_lemma, 
face-type-at, 
lattice-point_wf, 
face_lattice_wf, 
subtype_rel_set, 
bounded-lattice-structure_wf, 
lattice-structure_wf, 
lattice-axioms_wf, 
bounded-lattice-structure-subtype, 
bounded-lattice-axioms_wf, 
uall_wf, 
equal_wf, 
lattice-meet_wf, 
lattice-join_wf, 
fl-morph_wf, 
nh-comp_wf, 
bounded-lattice-hom_wf, 
bdd-distributive-lattice_wf, 
squash_wf, 
true_wf, 
fl-morph-comp2, 
iff_weakening_equal
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
sqequalRule, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
applyEquality, 
instantiate, 
because_Cache, 
equalityTransitivity, 
equalitySymmetry, 
lambdaEquality, 
hyp_replacement, 
imageElimination, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
dependent_functionElimination, 
independent_isectElimination, 
lambdaFormation, 
rename, 
axiomEquality, 
productEquality, 
cumulativity, 
setElimination, 
universeEquality, 
productElimination, 
independent_functionElimination
Latex:
\mforall{}[I,K:fset(\mBbbN{})].  \mforall{}[f:K  {}\mrightarrow{}  I].  \mforall{}[phi:\mBbbF{}(I)].
    (canonical-section(();\mBbbF{};K;\mcdot{};f(phi))  =  (canonical-section(();\mBbbF{};I;\mcdot{};phi))<f>)
Date html generated:
2018_05_23-AM-09_24_26
Last ObjectModification:
2018_05_20-PM-06_23_18
Theory : cubical!type!theory
Home
Index