Nuprl Lemma : csm-canonical-section-face-type

[I,K:fset(ℕ)]. ∀[f:K ⟶ I]. ∀[phi:𝔽(I)].
  (canonical-section(();𝔽;K;⋅;f(phi)) (canonical-section(();𝔽;I;⋅;phi))<f> ∈ {formal-cube(K) ⊢ _:𝔽})


Proof




Definitions occuring in Statement :  face-type: 𝔽 csm-ap-term: (t)s canonical-section: canonical-section(Gamma;A;I;rho;a) cubical-term: {X ⊢ _:A} face-presheaf: 𝔽 context-map: <rho> trivial-cube-set: () formal-cube: formal-cube(I) cube-set-restriction: f(s) I_cube: A(I) names-hom: I ⟶ J fset: fset(T) nat: it: uall: [x:A]. B[x] equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T top: Top subtype_rel: A ⊆B unit: Unit I_cube: A(I) functor-ob: ob(F) pi1: fst(t) trivial-cube-set: () face-presheaf: 𝔽 lattice-point: Point(l) record-select: r.x face_lattice: face_lattice(I) face-lattice: face-lattice(T;eq) free-dist-lattice-with-constraints: free-dist-lattice-with-constraints(T;eq;x.Cs[x]) constrained-antichain-lattice: constrained-antichain-lattice(T;eq;P) mk-bounded-distributive-lattice: mk-bounded-distributive-lattice mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o) record-update: r[x := v] ifthenelse: if then else fi  eq_atom: =a y bfalse: ff btrue: tt cubical-type-at: A(a) face-type: 𝔽 constant-cubical-type: (X) squash: T true: True all: x:A. B[x] names-hom: I ⟶ J formal-cube: formal-cube(I) uimplies: supposing a canonical-section: canonical-section(Gamma;A;I;rho;a) csm-ap-term: (t)s context-map: <rho> csm-ap: (s)x bdd-distributive-lattice: BoundedDistributiveLattice so_lambda: λ2x.t[x] prop: and: P ∧ Q so_apply: x[s] bounded-lattice-hom: Hom(l1;l2) lattice-hom: Hom(l1;l2) guard: {T} iff: ⇐⇒ Q rev_implies:  Q implies:  Q
Lemmas referenced :  cubical-term-equal2 formal-cube_wf face-type_wf csm-face-type cubical-term_wf canonical-section_wf trivial-cube-set_wf it_wf subtype_rel_self I_cube_wf cube-set-restriction_wf face-presheaf_wf cubical-type-at_wf_face-type csm-ap-term_wf csm-ap-type_wf context-map_wf I_cube_pair_redex_lemma names-hom_wf fset_wf nat_wf cube_set_restriction_pair_lemma face-type-ap-morph arrow_pair_lemma face-type-at lattice-point_wf face_lattice_wf subtype_rel_set bounded-lattice-structure_wf lattice-structure_wf lattice-axioms_wf bounded-lattice-structure-subtype bounded-lattice-axioms_wf uall_wf equal_wf lattice-meet_wf lattice-join_wf fl-morph_wf nh-comp_wf bounded-lattice-hom_wf bdd-distributive-lattice_wf squash_wf true_wf fl-morph-comp2 iff_weakening_equal
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis sqequalRule isect_memberEquality voidElimination voidEquality applyEquality instantiate because_Cache equalityTransitivity equalitySymmetry lambdaEquality hyp_replacement imageElimination natural_numberEquality imageMemberEquality baseClosed dependent_functionElimination independent_isectElimination lambdaFormation rename axiomEquality productEquality cumulativity setElimination universeEquality productElimination independent_functionElimination

Latex:
\mforall{}[I,K:fset(\mBbbN{})].  \mforall{}[f:K  {}\mrightarrow{}  I].  \mforall{}[phi:\mBbbF{}(I)].
    (canonical-section(();\mBbbF{};K;\mcdot{};f(phi))  =  (canonical-section(();\mBbbF{};I;\mcdot{};phi))<f>)



Date html generated: 2018_05_23-AM-09_24_26
Last ObjectModification: 2018_05_20-PM-06_23_18

Theory : cubical!type!theory


Home Index