Nuprl Lemma : fl-morph-comp2

[I,J,K:fset(ℕ)]. ∀[f:J ⟶ I]. ∀[g:K ⟶ J]. ∀[x:Point(face_lattice(I))].
  (((x)<f>)<g> (x)<f ⋅ g> ∈ Point(face_lattice(K)))


Proof




Definitions occuring in Statement :  fl-morph: <f> face_lattice: face_lattice(I) nh-comp: g ⋅ f names-hom: I ⟶ J lattice-point: Point(l) fset: fset(T) nat: uall: [x:A]. B[x] apply: a equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T subtype_rel: A ⊆B compose: g bdd-distributive-lattice: BoundedDistributiveLattice so_lambda: λ2x.t[x] prop: and: P ∧ Q so_apply: x[s] uimplies: supposing a
Lemmas referenced :  fl-morph-comp lattice-point_wf face_lattice_wf subtype_rel_set bounded-lattice-structure_wf lattice-structure_wf lattice-axioms_wf bounded-lattice-structure-subtype bounded-lattice-axioms_wf uall_wf equal_wf lattice-meet_wf lattice-join_wf names-hom_wf fset_wf nat_wf
Rules used in proof :  cut lemma_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation hypothesis sqequalHypSubstitution isectElimination thin hypothesisEquality applyEquality lambdaEquality functionEquality because_Cache sqequalRule equalitySymmetry instantiate productEquality cumulativity universeEquality independent_isectElimination

Latex:
\mforall{}[I,J,K:fset(\mBbbN{})].  \mforall{}[f:J  {}\mrightarrow{}  I].  \mforall{}[g:K  {}\mrightarrow{}  J].  \mforall{}[x:Point(face\_lattice(I))].    (((x)<f>)<g>  =  (x)<f  \mcdot{}  g>)



Date html generated: 2016_05_18-PM-00_15_49
Last ObjectModification: 2015_12_28-PM-03_00_28

Theory : cubical!type!theory


Home Index