Nuprl Lemma : fl-morph-comp
∀[I,J,K:fset(ℕ)]. ∀[f:J ⟶ I]. ∀[g:K ⟶ J].
  (<f ⋅ g> = (<g> o <f>) ∈ (Point(face_lattice(I)) ⟶ Point(face_lattice(K))))
Proof
Definitions occuring in Statement : 
fl-morph: <f>
, 
face_lattice: face_lattice(I)
, 
nh-comp: g ⋅ f
, 
names-hom: I ⟶ J
, 
lattice-point: Point(l)
, 
fset: fset(T)
, 
compose: f o g
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
function: x:A ⟶ B[x]
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
face_lattice: face_lattice(I)
, 
subtype_rel: A ⊆r B
, 
names-hom: I ⟶ J
, 
DeMorgan-algebra: DeMorganAlgebra
, 
so_lambda: λ2x.t[x]
, 
prop: ℙ
, 
and: P ∧ Q
, 
guard: {T}
, 
uimplies: b supposing a
, 
so_apply: x[s]
, 
lattice-point: Point(l)
, 
record-select: r.x
, 
dM: dM(I)
, 
free-DeMorgan-algebra: free-DeMorgan-algebra(T;eq)
, 
mk-DeMorgan-algebra: mk-DeMorgan-algebra(L;n)
, 
record-update: r[x := v]
, 
ifthenelse: if b then t else f fi 
, 
eq_atom: x =a y
, 
bfalse: ff
, 
free-DeMorgan-lattice: free-DeMorgan-lattice(T;eq)
, 
free-dist-lattice: free-dist-lattice(T; eq)
, 
mk-bounded-distributive-lattice: mk-bounded-distributive-lattice, 
mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o)
, 
btrue: tt
, 
bdd-distributive-lattice: BoundedDistributiveLattice
, 
all: ∀x:A. B[x]
, 
squash: ↓T
, 
true: True
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
implies: P 
⇒ Q
, 
compose: f o g
, 
fl-morph: <f>
, 
bounded-lattice-hom: Hom(l1;l2)
, 
lattice-hom: Hom(l1;l2)
, 
fl1: (x=1)
, 
fl0: (x=0)
, 
nh-comp: g ⋅ f
, 
dma-lift-compose: dma-lift-compose(I;J;eqi;eqj;f;g)
, 
top: Top
, 
dma-hom: dma-hom(dma1;dma2)
, 
dM_inc: <x>
Lemmas referenced : 
fl-lift-unique, 
names_wf, 
names-deq_wf, 
face-lattice_wf, 
face_lattice-deq_wf, 
dM-to-FL_wf, 
dm-neg_wf, 
nh-comp_wf, 
names-hom_wf, 
subtype_rel-equal, 
lattice-point_wf, 
dM_wf, 
subtype_rel_set, 
DeMorgan-algebra-structure_wf, 
lattice-structure_wf, 
lattice-axioms_wf, 
bounded-lattice-structure-subtype, 
DeMorgan-algebra-structure-subtype, 
subtype_rel_transitivity, 
bounded-lattice-structure_wf, 
bounded-lattice-axioms_wf, 
uall_wf, 
equal_wf, 
lattice-meet_wf, 
lattice-join_wf, 
DeMorgan-algebra-axioms_wf, 
free-DeMorgan-lattice_wf, 
squash_wf, 
true_wf, 
face_lattice_wf, 
dM-to-FL-neg2, 
lattice-0_wf, 
bdd-distributive-lattice_wf, 
iff_weakening_equal, 
fset_wf, 
nat_wf, 
compose-bounded-lattice-hom, 
bdd-distributive-lattice-subtype-bdd-lattice, 
fl-morph_wf, 
bounded-lattice-hom_wf, 
equal_functionality_wrt_subtype_rel2, 
fl-morph-fl0, 
free-dma-lift_wf, 
dM-point, 
free-dl-point, 
free-dml-deq_wf, 
set_wf, 
dma-hom_wf, 
free-DeMorgan-algebra_wf, 
all_wf, 
free-dma-point, 
dminc_wf, 
free-dma-neg, 
fl-morph-comp-1, 
fl-morph-fl1
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
lambdaEquality, 
because_Cache, 
applyEquality, 
sqequalRule, 
instantiate, 
productEquality, 
independent_isectElimination, 
cumulativity, 
universeEquality, 
lambdaFormation, 
imageElimination, 
equalityTransitivity, 
equalitySymmetry, 
dependent_functionElimination, 
setElimination, 
rename, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
productElimination, 
independent_functionElimination, 
isect_memberEquality, 
axiomEquality, 
functionEquality, 
independent_pairFormation, 
voidElimination, 
voidEquality, 
hyp_replacement, 
applyLambdaEquality, 
promote_hyp
Latex:
\mforall{}[I,J,K:fset(\mBbbN{})].  \mforall{}[f:J  {}\mrightarrow{}  I].  \mforall{}[g:K  {}\mrightarrow{}  J].    (<f  \mcdot{}  g>  =  (<g>  o  <f>))
Date html generated:
2017_10_05-AM-01_14_23
Last ObjectModification:
2017_07_28-AM-09_31_32
Theory : cubical!type!theory
Home
Index