Nuprl Lemma : fl-morph-comp

[I,J,K:fset(ℕ)]. ∀[f:J ⟶ I]. ∀[g:K ⟶ J].
  (<f ⋅ g> (<g> o <f>) ∈ (Point(face_lattice(I)) ⟶ Point(face_lattice(K))))


Proof




Definitions occuring in Statement :  fl-morph: <f> face_lattice: face_lattice(I) nh-comp: g ⋅ f names-hom: I ⟶ J lattice-point: Point(l) fset: fset(T) compose: g nat: uall: [x:A]. B[x] function: x:A ⟶ B[x] equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T face_lattice: face_lattice(I) subtype_rel: A ⊆B names-hom: I ⟶ J DeMorgan-algebra: DeMorganAlgebra so_lambda: λ2x.t[x] prop: and: P ∧ Q guard: {T} uimplies: supposing a so_apply: x[s] lattice-point: Point(l) record-select: r.x dM: dM(I) free-DeMorgan-algebra: free-DeMorgan-algebra(T;eq) mk-DeMorgan-algebra: mk-DeMorgan-algebra(L;n) record-update: r[x := v] ifthenelse: if then else fi  eq_atom: =a y bfalse: ff free-DeMorgan-lattice: free-DeMorgan-lattice(T;eq) free-dist-lattice: free-dist-lattice(T; eq) mk-bounded-distributive-lattice: mk-bounded-distributive-lattice mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o) btrue: tt bdd-distributive-lattice: BoundedDistributiveLattice all: x:A. B[x] squash: T true: True iff: ⇐⇒ Q rev_implies:  Q implies:  Q compose: g fl-morph: <f> bounded-lattice-hom: Hom(l1;l2) lattice-hom: Hom(l1;l2) fl1: (x=1) fl0: (x=0) nh-comp: g ⋅ f dma-lift-compose: dma-lift-compose(I;J;eqi;eqj;f;g) top: Top dma-hom: dma-hom(dma1;dma2) dM_inc: <x>
Lemmas referenced :  fl-lift-unique names_wf names-deq_wf face-lattice_wf face_lattice-deq_wf dM-to-FL_wf dm-neg_wf nh-comp_wf names-hom_wf subtype_rel-equal lattice-point_wf dM_wf subtype_rel_set DeMorgan-algebra-structure_wf lattice-structure_wf lattice-axioms_wf bounded-lattice-structure-subtype DeMorgan-algebra-structure-subtype subtype_rel_transitivity bounded-lattice-structure_wf bounded-lattice-axioms_wf uall_wf equal_wf lattice-meet_wf lattice-join_wf DeMorgan-algebra-axioms_wf free-DeMorgan-lattice_wf squash_wf true_wf face_lattice_wf dM-to-FL-neg2 lattice-0_wf bdd-distributive-lattice_wf iff_weakening_equal fset_wf nat_wf compose-bounded-lattice-hom bdd-distributive-lattice-subtype-bdd-lattice fl-morph_wf bounded-lattice-hom_wf equal_functionality_wrt_subtype_rel2 fl-morph-fl0 free-dma-lift_wf dM-point free-dl-point free-dml-deq_wf set_wf dma-hom_wf free-DeMorgan-algebra_wf all_wf free-dma-point dminc_wf free-dma-neg fl-morph-comp-1 fl-morph-fl1
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis lambdaEquality because_Cache applyEquality sqequalRule instantiate productEquality independent_isectElimination cumulativity universeEquality lambdaFormation imageElimination equalityTransitivity equalitySymmetry dependent_functionElimination setElimination rename natural_numberEquality imageMemberEquality baseClosed productElimination independent_functionElimination isect_memberEquality axiomEquality functionEquality independent_pairFormation voidElimination voidEquality hyp_replacement applyLambdaEquality promote_hyp

Latex:
\mforall{}[I,J,K:fset(\mBbbN{})].  \mforall{}[f:J  {}\mrightarrow{}  I].  \mforall{}[g:K  {}\mrightarrow{}  J].    (<f  \mcdot{}  g>  =  (<g>  o  <f>))



Date html generated: 2017_10_05-AM-01_14_23
Last ObjectModification: 2017_07_28-AM-09_31_32

Theory : cubical!type!theory


Home Index