Nuprl Lemma : fl-morph-comp-1

[J,K:fset(ℕ)]. ∀[f:K ⟶ J]. ∀[z:Point(dM(J))]. ∀[h:dma-hom(dM(J);dM(K))].
  (dM-to-FL(J;z))<f> dM-to-FL(K;h z) ∈ Point(face_lattice(K)) supposing ∀i:names(J). ((h <i>(f i) ∈ Point(dM(K)))


Proof




Definitions occuring in Statement :  fl-morph: <f> dM-to-FL: dM-to-FL(I;z) face_lattice: face_lattice(I) names-hom: I ⟶ J dM_inc: <x> dM: dM(I) names: names(I) dma-hom: dma-hom(dma1;dma2) lattice-point: Point(l) fset: fset(T) nat: uimplies: supposing a uall: [x:A]. B[x] all: x:A. B[x] apply: a equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a prop: so_lambda: λ2x.t[x] subtype_rel: A ⊆B DeMorgan-algebra: DeMorganAlgebra and: P ∧ Q guard: {T} so_apply: x[s] dma-hom: dma-hom(dma1;dma2) bounded-lattice-hom: Hom(l1;l2) lattice-hom: Hom(l1;l2) names-hom: I ⟶ J all: x:A. B[x] bdd-distributive-lattice: BoundedDistributiveLattice squash: T true: True iff: ⇐⇒ Q rev_implies:  Q implies:  Q dM: dM(I) compose: g cand: c∧ B fl-morph: <f> lattice-point: Point(l) record-select: r.x free-DeMorgan-algebra: free-DeMorgan-algebra(T;eq) mk-DeMorgan-algebra: mk-DeMorgan-algebra(L;n) record-update: r[x := v] ifthenelse: if then else fi  eq_atom: =a y bfalse: ff free-DeMorgan-lattice: free-DeMorgan-lattice(T;eq) free-dist-lattice: free-dist-lattice(T; eq) mk-bounded-distributive-lattice: mk-bounded-distributive-lattice mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o) btrue: tt fl1: (x=1) fl0: (x=0) dm-neg: ¬(x) lattice-extend: lattice-extend(L;eq;eqL;f;ac) lattice-fset-join: \/(s) reduce: reduce(f;k;as) list_ind: list_ind fset-image: f"(s) f-union: f-union(domeq;rngeq;s;x.g[x]) list_accum: list_accum dma-neg: ¬(x)
Lemmas referenced :  all_wf names_wf equal_wf lattice-point_wf dM_wf subtype_rel_set DeMorgan-algebra-structure_wf lattice-structure_wf lattice-axioms_wf bounded-lattice-structure-subtype DeMorgan-algebra-structure-subtype subtype_rel_transitivity bounded-lattice-structure_wf bounded-lattice-axioms_wf uall_wf lattice-meet_wf lattice-join_wf DeMorgan-algebra-axioms_wf dM_inc_wf dma-hom_wf names-hom_wf fset_wf nat_wf dM-hom-unique face_lattice_wf face_lattice-deq_wf compose-bounded-lattice-hom bdd-distributive-lattice-subtype-bdd-lattice DeMorgan-algebra-subtype DeMorgan-algebra_wf bdd-distributive-lattice_wf bdd-lattice_wf fl-morph_wf dM-to-FL-is-hom subtype_rel-equal bounded-lattice-hom_wf free-DeMorgan-lattice_wf names-deq_wf squash_wf true_wf free-dma-hom-is-lattice-hom iff_weakening_equal dM-to-FL-inc dM-to-FL_wf fl-lift_wf dm-neg_wf dM-to-FL-neg2 lattice-0_wf set_wf face-lattice_wf face-lattice0_wf face-lattice1_wf dM-to-FL-opp dM_opp_wf neg-dM_inc dma-neg-dM_inc dma-neg_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut hypothesis extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality sqequalRule lambdaEquality applyEquality instantiate productEquality independent_isectElimination cumulativity universeEquality because_Cache setElimination rename isect_memberEquality axiomEquality equalityTransitivity equalitySymmetry dependent_functionElimination imageElimination natural_numberEquality imageMemberEquality baseClosed productElimination independent_functionElimination lambdaFormation independent_pairFormation hyp_replacement applyLambdaEquality

Latex:
\mforall{}[J,K:fset(\mBbbN{})].  \mforall{}[f:K  {}\mrightarrow{}  J].  \mforall{}[z:Point(dM(J))].  \mforall{}[h:dma-hom(dM(J);dM(K))].
    (dM-to-FL(J;z))<f>  =  dM-to-FL(K;h  z)  supposing  \mforall{}i:names(J).  ((h  <i>)  =  (f  i))



Date html generated: 2017_10_05-AM-01_14_10
Last ObjectModification: 2017_07_28-AM-09_31_23

Theory : cubical!type!theory


Home Index