Nuprl Lemma : dM-hom-unique

[I:fset(ℕ)]. ∀[L:BoundedDistributiveLattice]. ∀[eqL:EqDecider(Point(L))]. ∀[g,h:Hom(dM(I);L)].
  h ∈ Hom(dM(I);L) supposing ∀i:names(I). (((g <i>(h <i>) ∈ Point(L)) ∧ ((g <1-i>(h <1-i>) ∈ Point(L)))


Proof




Definitions occuring in Statement :  dM_opp: <1-x> dM_inc: <x> dM: dM(I) names: names(I) bdd-distributive-lattice: BoundedDistributiveLattice bounded-lattice-hom: Hom(l1;l2) lattice-point: Point(l) fset: fset(T) deq: EqDecider(T) nat: uimplies: supposing a uall: [x:A]. B[x] all: x:A. B[x] and: P ∧ Q apply: a equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a prop: so_lambda: λ2x.t[x] and: P ∧ Q subtype_rel: A ⊆B bdd-distributive-lattice: BoundedDistributiveLattice so_apply: x[s] bounded-lattice-hom: Hom(l1;l2) lattice-hom: Hom(l1;l2) DeMorgan-algebra: DeMorganAlgebra guard: {T} dM: dM(I) free-DeMorgan-lattice: free-DeMorgan-lattice(T;eq) all: x:A. B[x] dminc: <i> dM_inc: <x> dmopp: <1-i> dM_opp: <1-x>
Lemmas referenced :  all_wf names_wf equal_wf lattice-point_wf subtype_rel_set bounded-lattice-structure_wf lattice-structure_wf lattice-axioms_wf bounded-lattice-structure-subtype bounded-lattice-axioms_wf uall_wf lattice-meet_wf lattice-join_wf dM_inc_wf dM_opp_wf bounded-lattice-hom_wf dM_wf DeMorgan-algebra-structure_wf DeMorgan-algebra-structure-subtype subtype_rel_transitivity DeMorgan-algebra-axioms_wf deq_wf bdd-distributive-lattice_wf fset_wf nat_wf free-dist-lattice-hom-unique2 union-deq_wf names-deq_wf free-dma-hom-is-lattice-hom
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut hypothesis extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality sqequalRule lambdaEquality productEquality applyEquality instantiate cumulativity universeEquality because_Cache independent_isectElimination setElimination rename isect_memberEquality axiomEquality equalityTransitivity equalitySymmetry unionEquality hyp_replacement lambdaFormation unionElimination dependent_functionElimination productElimination

Latex:
\mforall{}[I:fset(\mBbbN{})].  \mforall{}[L:BoundedDistributiveLattice].  \mforall{}[eqL:EqDecider(Point(L))].  \mforall{}[g,h:Hom(dM(I);L)].
    g  =  h  supposing  \mforall{}i:names(I).  (((g  <i>)  =  (h  <i>))  \mwedge{}  ((g  ə-i>)  =  (h  ə-i>)))



Date html generated: 2017_10_05-AM-00_59_29
Last ObjectModification: 2017_07_28-AM-09_25_20

Theory : cubical!type!theory


Home Index