Nuprl Lemma : dM-hom-unique
∀[I:fset(ℕ)]. ∀[L:BoundedDistributiveLattice]. ∀[eqL:EqDecider(Point(L))]. ∀[g,h:Hom(dM(I);L)].
  g = h ∈ Hom(dM(I);L) supposing ∀i:names(I). (((g <i>) = (h <i>) ∈ Point(L)) ∧ ((g <1-i>) = (h <1-i>) ∈ Point(L)))
Proof
Definitions occuring in Statement : 
dM_opp: <1-x>
, 
dM_inc: <x>
, 
dM: dM(I)
, 
names: names(I)
, 
bdd-distributive-lattice: BoundedDistributiveLattice
, 
bounded-lattice-hom: Hom(l1;l2)
, 
lattice-point: Point(l)
, 
fset: fset(T)
, 
deq: EqDecider(T)
, 
nat: ℕ
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
and: P ∧ Q
, 
apply: f a
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
and: P ∧ Q
, 
subtype_rel: A ⊆r B
, 
bdd-distributive-lattice: BoundedDistributiveLattice
, 
so_apply: x[s]
, 
bounded-lattice-hom: Hom(l1;l2)
, 
lattice-hom: Hom(l1;l2)
, 
DeMorgan-algebra: DeMorganAlgebra
, 
guard: {T}
, 
dM: dM(I)
, 
free-DeMorgan-lattice: free-DeMorgan-lattice(T;eq)
, 
all: ∀x:A. B[x]
, 
dminc: <i>
, 
dM_inc: <x>
, 
dmopp: <1-i>
, 
dM_opp: <1-x>
Lemmas referenced : 
all_wf, 
names_wf, 
equal_wf, 
lattice-point_wf, 
subtype_rel_set, 
bounded-lattice-structure_wf, 
lattice-structure_wf, 
lattice-axioms_wf, 
bounded-lattice-structure-subtype, 
bounded-lattice-axioms_wf, 
uall_wf, 
lattice-meet_wf, 
lattice-join_wf, 
dM_inc_wf, 
dM_opp_wf, 
bounded-lattice-hom_wf, 
dM_wf, 
DeMorgan-algebra-structure_wf, 
DeMorgan-algebra-structure-subtype, 
subtype_rel_transitivity, 
DeMorgan-algebra-axioms_wf, 
deq_wf, 
bdd-distributive-lattice_wf, 
fset_wf, 
nat_wf, 
free-dist-lattice-hom-unique2, 
union-deq_wf, 
names-deq_wf, 
free-dma-hom-is-lattice-hom
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
hypothesis, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
sqequalRule, 
lambdaEquality, 
productEquality, 
applyEquality, 
instantiate, 
cumulativity, 
universeEquality, 
because_Cache, 
independent_isectElimination, 
setElimination, 
rename, 
isect_memberEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
unionEquality, 
hyp_replacement, 
lambdaFormation, 
unionElimination, 
dependent_functionElimination, 
productElimination
Latex:
\mforall{}[I:fset(\mBbbN{})].  \mforall{}[L:BoundedDistributiveLattice].  \mforall{}[eqL:EqDecider(Point(L))].  \mforall{}[g,h:Hom(dM(I);L)].
    g  =  h  supposing  \mforall{}i:names(I).  (((g  <i>)  =  (h  <i>))  \mwedge{}  ((g  ə-i>)  =  (h  ə-i>)))
Date html generated:
2017_10_05-AM-00_59_29
Last ObjectModification:
2017_07_28-AM-09_25_20
Theory : cubical!type!theory
Home
Index