Nuprl Lemma : dM-to-FL-is-hom
∀[I:fset(ℕ)]. (λz.dM-to-FL(I;z) ∈ Hom(free-DeMorgan-lattice(names(I);NamesDeq);face_lattice(I)))
Proof
Definitions occuring in Statement : 
dM-to-FL: dM-to-FL(I;z)
, 
face_lattice: face_lattice(I)
, 
names-deq: NamesDeq
, 
names: names(I)
, 
free-DeMorgan-lattice: free-DeMorgan-lattice(T;eq)
, 
bounded-lattice-hom: Hom(l1;l2)
, 
fset: fset(T)
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
lambda: λx.A[x]
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
dM-to-FL: dM-to-FL(I;z)
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
free-DeMorgan-lattice: free-DeMorgan-lattice(T;eq)
Lemmas referenced : 
fset_wf, 
nat_wf, 
lattice-extend-is-hom, 
names_wf, 
union-deq_wf, 
names-deq_wf, 
face_lattice_wf, 
face_lattice-deq_wf, 
fl1_wf, 
fl0_wf, 
equal_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalHypSubstitution, 
hypothesis, 
sqequalRule, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
extract_by_obid, 
isectElimination, 
thin, 
unionEquality, 
hypothesisEquality, 
lambdaEquality, 
because_Cache, 
lambdaFormation, 
unionElimination, 
dependent_functionElimination, 
independent_functionElimination
Latex:
\mforall{}[I:fset(\mBbbN{})].  (\mlambda{}z.dM-to-FL(I;z)  \mmember{}  Hom(free-DeMorgan-lattice(names(I);NamesDeq);face\_lattice(I)))
Date html generated:
2019_11_04-PM-05_33_38
Last ObjectModification:
2018_08_21-PM-02_03_02
Theory : cubical!type!theory
Home
Index