Nuprl Lemma : dM-to-FL-is-hom

[I:fset(ℕ)]. z.dM-to-FL(I;z) ∈ Hom(free-DeMorgan-lattice(names(I);NamesDeq);face_lattice(I)))


Proof




Definitions occuring in Statement :  dM-to-FL: dM-to-FL(I;z) face_lattice: face_lattice(I) names-deq: NamesDeq names: names(I) free-DeMorgan-lattice: free-DeMorgan-lattice(T;eq) bounded-lattice-hom: Hom(l1;l2) fset: fset(T) nat: uall: [x:A]. B[x] member: t ∈ T lambda: λx.A[x]
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T dM-to-FL: dM-to-FL(I;z) all: x:A. B[x] implies:  Q prop: free-DeMorgan-lattice: free-DeMorgan-lattice(T;eq)
Lemmas referenced :  fset_wf nat_wf lattice-extend-is-hom names_wf union-deq_wf names-deq_wf face_lattice_wf face_lattice-deq_wf fl1_wf fl0_wf equal_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalHypSubstitution hypothesis sqequalRule axiomEquality equalityTransitivity equalitySymmetry extract_by_obid isectElimination thin unionEquality hypothesisEquality lambdaEquality because_Cache lambdaFormation unionElimination dependent_functionElimination independent_functionElimination

Latex:
\mforall{}[I:fset(\mBbbN{})].  (\mlambda{}z.dM-to-FL(I;z)  \mmember{}  Hom(free-DeMorgan-lattice(names(I);NamesDeq);face\_lattice(I)))



Date html generated: 2019_11_04-PM-05_33_38
Last ObjectModification: 2018_08_21-PM-02_03_02

Theory : cubical!type!theory


Home Index