Nuprl Lemma : free-dma-neg

[T,eq,x:Top].  (x) dm-neg(T;eq;x))


Proof




Definitions occuring in Statement :  free-DeMorgan-algebra: free-DeMorgan-algebra(T;eq) dma-neg: ¬(x) dm-neg: ¬(x) uall: [x:A]. B[x] top: Top sqequal: t
Definitions unfolded in proof :  free-DeMorgan-algebra: free-DeMorgan-algebra(T;eq) dma-neg: ¬(x) mk-DeMorgan-algebra: mk-DeMorgan-algebra(L;n) all: x:A. B[x] member: t ∈ T top: Top eq_atom: =a y ifthenelse: if then else fi  btrue: tt uall: [x:A]. B[x]
Lemmas referenced :  rec_select_update_lemma top_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep cut lemma_by_obid sqequalHypSubstitution dependent_functionElimination thin isect_memberEquality voidElimination voidEquality hypothesis isect_memberFormation introduction sqequalAxiom isectElimination hypothesisEquality because_Cache

Latex:
\mforall{}[T,eq,x:Top].    (\mneg{}(x)  \msim{}  dm-neg(T;eq;x))



Date html generated: 2016_05_18-AM-11_49_05
Last ObjectModification: 2015_12_28-PM-01_55_00

Theory : lattices


Home Index