Nuprl Lemma : fl-morph-fl0

[J,I:fset(ℕ)]. ∀[f:J ⟶ I]. ∀[x:names(I)].  (((x=0))<f> dM-to-FL(J;¬(f x)) ∈ Point(face_lattice(J)))


Proof




Definitions occuring in Statement :  fl-morph: <f> dM-to-FL: dM-to-FL(I;z) fl0: (x=0) face_lattice: face_lattice(I) names-hom: I ⟶ J names-deq: NamesDeq names: names(I) dm-neg: ¬(x) lattice-point: Point(l) fset: fset(T) nat: uall: [x:A]. B[x] apply: a equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T fl0: (x=0)
Lemmas referenced :  fl-morph-face-lattice0 names_wf names-hom_wf fset_wf nat_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis isect_memberEquality axiomEquality because_Cache

Latex:
\mforall{}[J,I:fset(\mBbbN{})].  \mforall{}[f:J  {}\mrightarrow{}  I].  \mforall{}[x:names(I)].    (((x=0))<f>  =  dM-to-FL(J;\mneg{}(f  x)))



Date html generated: 2016_05_18-PM-00_14_30
Last ObjectModification: 2015_12_28-PM-03_00_41

Theory : cubical!type!theory


Home Index