Nuprl Lemma : fl-morph-fl1
∀[J,I:fset(ℕ)]. ∀[f:J ⟶ I]. ∀[x:names(I)].  (((x=1))<f> = dM-to-FL(J;f x) ∈ Point(face_lattice(J)))
Proof
Definitions occuring in Statement : 
fl-morph: <f>
, 
dM-to-FL: dM-to-FL(I;z)
, 
fl1: (x=1)
, 
face_lattice: face_lattice(I)
, 
names-hom: I ⟶ J
, 
names: names(I)
, 
lattice-point: Point(l)
, 
fset: fset(T)
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
apply: f a
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
fl1: (x=1)
Lemmas referenced : 
fl-morph-face-lattice1, 
names_wf, 
names-hom_wf, 
fset_wf, 
nat_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
isect_memberEquality, 
axiomEquality, 
because_Cache
Latex:
\mforall{}[J,I:fset(\mBbbN{})].  \mforall{}[f:J  {}\mrightarrow{}  I].  \mforall{}[x:names(I)].    (((x=1))<f>  =  dM-to-FL(J;f  x))
Date html generated:
2016_05_18-PM-00_14_43
Last ObjectModification:
2015_12_28-PM-03_00_32
Theory : cubical!type!theory
Home
Index