Nuprl Lemma : cubical-term-equal2

[X:j⊢]. ∀[A:{X ⊢ _}]. ∀[u,z:{X ⊢ _:A}].  z ∈ {X ⊢ _:A} supposing ∀I:fset(ℕ). ∀a:X(I).  ((u a) (z a) ∈ A(a))


Proof




Definitions occuring in Statement :  cubical-term: {X ⊢ _:A} cubical-type-at: A(a) cubical-type: {X ⊢ _} I_cube: A(I) cubical_set: CubicalSet fset: fset(T) nat: uimplies: supposing a uall: [x:A]. B[x] all: x:A. B[x] apply: a equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T cubical_set: CubicalSet cube-cat: CubeCat all: x:A. B[x] I_cube: A(I) I_set: A(I) cubical-type-at: A(a) presheaf-type-at: A(a)
Lemmas referenced :  presheaf-term-equal2 cube-cat_wf cubical-type-sq-presheaf-type cubical-term-sq-presheaf-term cat_ob_pair_lemma
Rules used in proof :  cut introduction extract_by_obid sqequalHypSubstitution sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isectElimination thin hypothesis sqequalRule Error :memTop,  dependent_functionElimination

Latex:
\mforall{}[X:j\mvdash{}].  \mforall{}[A:\{X  \mvdash{}  \_\}].  \mforall{}[u,z:\{X  \mvdash{}  \_:A\}].    u  =  z  supposing  \mforall{}I:fset(\mBbbN{}).  \mforall{}a:X(I).    ((u  I  a)  =  (z  I  a))



Date html generated: 2020_05_20-PM-01_52_32
Last ObjectModification: 2020_04_03-PM-08_28_02

Theory : cubical!type!theory


Home Index