Nuprl Lemma : subset-trans_wf
∀[I,J:fset(ℕ)]. ∀[f:J ⟶ I]. ∀[psi:𝔽(I)].  (subset-trans(I;J;f;psi) ∈ J,(psi)<f> j⟶ I,psi)
Proof
Definitions occuring in Statement : 
subset-trans: subset-trans(I;J;f;x)
, 
cubical-subset: I,psi
, 
face-presheaf: 𝔽
, 
fl-morph: <f>
, 
cube_set_map: A ⟶ B
, 
I_cube: A(I)
, 
names-hom: I ⟶ J
, 
fset: fset(T)
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
apply: f a
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
subset-trans: subset-trans(I;J;f;x)
, 
cube_set_map: A ⟶ B
, 
cube-cat: CubeCat
, 
psc_map: A ⟶ B
, 
type-cat: TypeCat
, 
op-cat: op-cat(C)
, 
nat-trans: nat-trans(C;D;F;G)
, 
spreadn: spread4, 
all: ∀x:A. B[x]
, 
functor-arrow: arrow(F)
, 
functor-ob: ob(F)
, 
cubical-subset: I,psi
, 
rep-sub-sheaf: rep-sub-sheaf(C;X;P)
, 
pi1: fst(t)
, 
pi2: snd(t)
, 
cat-comp: cat-comp(C)
, 
compose: f o g
, 
cat-arrow: cat-arrow(C)
, 
subtype_rel: A ⊆r B
, 
bounded-lattice-hom: Hom(l1;l2)
, 
lattice-hom: Hom(l1;l2)
, 
I_cube: A(I)
, 
face-presheaf: 𝔽
, 
lattice-point: Point(l)
, 
record-select: r.x
, 
face_lattice: face_lattice(I)
, 
face-lattice: face-lattice(T;eq)
, 
free-dist-lattice-with-constraints: free-dist-lattice-with-constraints(T;eq;x.Cs[x])
, 
constrained-antichain-lattice: constrained-antichain-lattice(T;eq;P)
, 
mk-bounded-distributive-lattice: mk-bounded-distributive-lattice, 
mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o)
, 
record-update: r[x := v]
, 
ifthenelse: if b then t else f fi 
, 
eq_atom: x =a y
, 
bfalse: ff
, 
btrue: tt
, 
bdd-distributive-lattice: BoundedDistributiveLattice
, 
so_lambda: λ2x.t[x]
, 
prop: ℙ
, 
and: P ∧ Q
, 
so_apply: x[s]
, 
uimplies: b supposing a
, 
name-morph-satisfies: (psi f) = 1
, 
squash: ↓T
, 
true: True
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
implies: P 
⇒ Q
Lemmas referenced : 
face-presheaf_wf, 
cat_arrow_triple_lemma, 
cat_comp_tuple_lemma, 
cat_ob_pair_lemma, 
I_cube_wf, 
small_cubical_set_subtype, 
names-hom_wf, 
fset_wf, 
nat_wf, 
name-morph-satisfies_wf, 
fl-morph_wf, 
subtype_rel_self, 
lattice-point_wf, 
face_lattice_wf, 
subtype_rel_set, 
bounded-lattice-structure_wf, 
lattice-structure_wf, 
lattice-axioms_wf, 
bounded-lattice-structure-subtype, 
bounded-lattice-axioms_wf, 
equal_wf, 
lattice-meet_wf, 
lattice-join_wf, 
nh-comp_wf, 
lattice-1_wf, 
squash_wf, 
true_wf, 
istype-universe, 
fl-morph-comp, 
iff_weakening_equal, 
nh-comp-assoc, 
fl-morph-1
Rules used in proof : 
cut, 
instantiate, 
introduction, 
extract_by_obid, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
sqequalRule, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
Error :memTop, 
hypothesis, 
dependent_set_memberEquality_alt, 
universeIsType, 
isectElimination, 
applyEquality, 
hypothesisEquality, 
because_Cache, 
lambdaEquality_alt, 
lambdaFormation_alt, 
setElimination, 
rename, 
inhabitedIsType, 
equalityTransitivity, 
equalitySymmetry, 
productEquality, 
cumulativity, 
isectEquality, 
independent_isectElimination, 
setIsType, 
equalityIstype, 
imageElimination, 
universeEquality, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
productElimination, 
independent_functionElimination, 
functionExtensionality, 
setEquality, 
functionIsType
Latex:
\mforall{}[I,J:fset(\mBbbN{})].  \mforall{}[f:J  {}\mrightarrow{}  I].  \mforall{}[psi:\mBbbF{}(I)].    (subset-trans(I;J;f;psi)  \mmember{}  J,(psi)<f>  j{}\mrightarrow{}  I,psi)
Date html generated:
2020_05_20-PM-01_45_46
Last ObjectModification:
2020_04_03-PM-07_16_14
Theory : cubical!type!theory
Home
Index