Nuprl Lemma : subset-trans_wf

[I,J:fset(ℕ)]. ∀[f:J ⟶ I]. ∀[psi:𝔽(I)].  (subset-trans(I;J;f;psi) ∈ J,(psi)<f> j⟶ I,psi)


Proof




Definitions occuring in Statement :  subset-trans: subset-trans(I;J;f;x) cubical-subset: I,psi face-presheaf: 𝔽 fl-morph: <f> cube_set_map: A ⟶ B I_cube: A(I) names-hom: I ⟶ J fset: fset(T) nat: uall: [x:A]. B[x] member: t ∈ T apply: a
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T subset-trans: subset-trans(I;J;f;x) cube_set_map: A ⟶ B cube-cat: CubeCat psc_map: A ⟶ B type-cat: TypeCat op-cat: op-cat(C) nat-trans: nat-trans(C;D;F;G) spreadn: spread4 all: x:A. B[x] functor-arrow: arrow(F) functor-ob: ob(F) cubical-subset: I,psi rep-sub-sheaf: rep-sub-sheaf(C;X;P) pi1: fst(t) pi2: snd(t) cat-comp: cat-comp(C) compose: g cat-arrow: cat-arrow(C) subtype_rel: A ⊆B bounded-lattice-hom: Hom(l1;l2) lattice-hom: Hom(l1;l2) I_cube: A(I) face-presheaf: 𝔽 lattice-point: Point(l) record-select: r.x face_lattice: face_lattice(I) face-lattice: face-lattice(T;eq) free-dist-lattice-with-constraints: free-dist-lattice-with-constraints(T;eq;x.Cs[x]) constrained-antichain-lattice: constrained-antichain-lattice(T;eq;P) mk-bounded-distributive-lattice: mk-bounded-distributive-lattice mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o) record-update: r[x := v] ifthenelse: if then else fi  eq_atom: =a y bfalse: ff btrue: tt bdd-distributive-lattice: BoundedDistributiveLattice so_lambda: λ2x.t[x] prop: and: P ∧ Q so_apply: x[s] uimplies: supposing a name-morph-satisfies: (psi f) 1 squash: T true: True guard: {T} iff: ⇐⇒ Q rev_implies:  Q implies:  Q
Lemmas referenced :  face-presheaf_wf cat_arrow_triple_lemma cat_comp_tuple_lemma cat_ob_pair_lemma I_cube_wf small_cubical_set_subtype names-hom_wf fset_wf nat_wf name-morph-satisfies_wf fl-morph_wf subtype_rel_self lattice-point_wf face_lattice_wf subtype_rel_set bounded-lattice-structure_wf lattice-structure_wf lattice-axioms_wf bounded-lattice-structure-subtype bounded-lattice-axioms_wf equal_wf lattice-meet_wf lattice-join_wf nh-comp_wf lattice-1_wf squash_wf true_wf istype-universe fl-morph-comp iff_weakening_equal nh-comp-assoc fl-morph-1
Rules used in proof :  cut instantiate introduction extract_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt sqequalRule sqequalHypSubstitution dependent_functionElimination thin Error :memTop,  hypothesis dependent_set_memberEquality_alt universeIsType isectElimination applyEquality hypothesisEquality because_Cache lambdaEquality_alt lambdaFormation_alt setElimination rename inhabitedIsType equalityTransitivity equalitySymmetry productEquality cumulativity isectEquality independent_isectElimination setIsType equalityIstype imageElimination universeEquality natural_numberEquality imageMemberEquality baseClosed productElimination independent_functionElimination functionExtensionality setEquality functionIsType

Latex:
\mforall{}[I,J:fset(\mBbbN{})].  \mforall{}[f:J  {}\mrightarrow{}  I].  \mforall{}[psi:\mBbbF{}(I)].    (subset-trans(I;J;f;psi)  \mmember{}  J,(psi)<f>  j{}\mrightarrow{}  I,psi)



Date html generated: 2020_05_20-PM-01_45_46
Last ObjectModification: 2020_04_03-PM-07_16_14

Theory : cubical!type!theory


Home Index