Nuprl Lemma : interval-0_wf

[Gamma:j⊢]. (0(𝕀) ∈ {Gamma ⊢ _:𝕀})


Proof




Definitions occuring in Statement :  interval-0: 0(𝕀) interval-type: 𝕀 cubical-term: {X ⊢ _:A} cubical_set: CubicalSet uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T cubical-term: {X ⊢ _:A} interval-0: 0(𝕀) subtype_rel: A ⊆B lattice-point: Point(l) record-select: r.x dM: dM(I) free-DeMorgan-algebra: free-DeMorgan-algebra(T;eq) mk-DeMorgan-algebra: mk-DeMorgan-algebra(L;n) record-update: r[x := v] ifthenelse: if then else fi  eq_atom: =a y bfalse: ff free-DeMorgan-lattice: free-DeMorgan-lattice(T;eq) free-dist-lattice: free-dist-lattice(T; eq) mk-bounded-distributive-lattice: mk-bounded-distributive-lattice mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o) btrue: tt cubical-type-at: A(a) pi1: fst(t) interval-type: 𝕀 constant-cubical-type: (X) I_cube: A(I) functor-ob: ob(F) interval-presheaf: 𝕀 all: x:A. B[x] dM0: 0 lattice-0: 0 empty-fset: {} nil: [] it: cubical-type-ap-morph: (u f) pi2: snd(t) cube-set-restriction: f(s) dM-lift: dM-lift(I;J;f) free-dma-lift: free-dma-lift(T;eq;dm;eq2;f) free-DeMorgan-algebra-property free-dist-lattice-property lattice-extend: lattice-extend(L;eq;eqL;f;ac) lattice-fset-join: \/(s) reduce: reduce(f;k;as) list_ind: list_ind fset-image: f"(s) f-union: f-union(domeq;rngeq;s;x.g[x]) list_accum: list_accum
Lemmas referenced :  dM0_wf subtype_rel_self cubical-type-at_wf interval-type_wf I_cube_wf fset_wf nat_wf cubical-type-ap-morph_wf names-hom_wf istype-cubical-type-at cube-set-restriction_wf cubical_set_wf free-DeMorgan-algebra-property free-dist-lattice-property
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut dependent_set_memberEquality_alt lambdaEquality_alt extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis applyEquality sqequalRule universeIsType lambdaFormation_alt because_Cache instantiate inhabitedIsType functionIsType equalityIstype axiomEquality equalityTransitivity equalitySymmetry

Latex:
\mforall{}[Gamma:j\mvdash{}].  (0(\mBbbI{})  \mmember{}  \{Gamma  \mvdash{}  \_:\mBbbI{}\})



Date html generated: 2020_05_20-PM-02_35_53
Last ObjectModification: 2020_04_04-AM-10_09_58

Theory : cubical!type!theory


Home Index