Nuprl Lemma : interval-0_wf
∀[Gamma:j⊢]. (0(𝕀) ∈ {Gamma ⊢ _:𝕀})
Proof
Definitions occuring in Statement : 
interval-0: 0(𝕀)
, 
interval-type: 𝕀
, 
cubical-term: {X ⊢ _:A}
, 
cubical_set: CubicalSet
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
cubical-term: {X ⊢ _:A}
, 
interval-0: 0(𝕀)
, 
subtype_rel: A ⊆r B
, 
lattice-point: Point(l)
, 
record-select: r.x
, 
dM: dM(I)
, 
free-DeMorgan-algebra: free-DeMorgan-algebra(T;eq)
, 
mk-DeMorgan-algebra: mk-DeMorgan-algebra(L;n)
, 
record-update: r[x := v]
, 
ifthenelse: if b then t else f fi 
, 
eq_atom: x =a y
, 
bfalse: ff
, 
free-DeMorgan-lattice: free-DeMorgan-lattice(T;eq)
, 
free-dist-lattice: free-dist-lattice(T; eq)
, 
mk-bounded-distributive-lattice: mk-bounded-distributive-lattice, 
mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o)
, 
btrue: tt
, 
cubical-type-at: A(a)
, 
pi1: fst(t)
, 
interval-type: 𝕀
, 
constant-cubical-type: (X)
, 
I_cube: A(I)
, 
functor-ob: ob(F)
, 
interval-presheaf: 𝕀
, 
all: ∀x:A. B[x]
, 
dM0: 0
, 
lattice-0: 0
, 
empty-fset: {}
, 
nil: []
, 
it: ⋅
, 
cubical-type-ap-morph: (u a f)
, 
pi2: snd(t)
, 
cube-set-restriction: f(s)
, 
dM-lift: dM-lift(I;J;f)
, 
free-dma-lift: free-dma-lift(T;eq;dm;eq2;f)
, 
free-DeMorgan-algebra-property, 
free-dist-lattice-property, 
lattice-extend: lattice-extend(L;eq;eqL;f;ac)
, 
lattice-fset-join: \/(s)
, 
reduce: reduce(f;k;as)
, 
list_ind: list_ind, 
fset-image: f"(s)
, 
f-union: f-union(domeq;rngeq;s;x.g[x])
, 
list_accum: list_accum
Lemmas referenced : 
dM0_wf, 
subtype_rel_self, 
cubical-type-at_wf, 
interval-type_wf, 
I_cube_wf, 
fset_wf, 
nat_wf, 
cubical-type-ap-morph_wf, 
names-hom_wf, 
istype-cubical-type-at, 
cube-set-restriction_wf, 
cubical_set_wf, 
free-DeMorgan-algebra-property, 
free-dist-lattice-property
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
dependent_set_memberEquality_alt, 
lambdaEquality_alt, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
applyEquality, 
sqequalRule, 
universeIsType, 
lambdaFormation_alt, 
because_Cache, 
instantiate, 
inhabitedIsType, 
functionIsType, 
equalityIstype, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry
Latex:
\mforall{}[Gamma:j\mvdash{}].  (0(\mBbbI{})  \mmember{}  \{Gamma  \mvdash{}  \_:\mBbbI{}\})
Date html generated:
2020_05_20-PM-02_35_53
Last ObjectModification:
2020_04_04-AM-10_09_58
Theory : cubical!type!theory
Home
Index