Nuprl Lemma : free-dist-lattice-property

T:Type. ∀eq:EqDecider(T). ∀L:BoundedDistributiveLattice. ∀eqL:EqDecider(Point(L)). ∀f:T ⟶ Point(L).
  ∃g:Hom(free-dist-lattice(T; eq);L). (f (g x.free-dl-inc(x))) ∈ (T ⟶ Point(L)))


Proof




Definitions occuring in Statement :  free-dl-inc: free-dl-inc(x) free-dist-lattice: free-dist-lattice(T; eq) bdd-distributive-lattice: BoundedDistributiveLattice bounded-lattice-hom: Hom(l1;l2) lattice-point: Point(l) deq: EqDecider(T) compose: g all: x:A. B[x] exists: x:A. B[x] lambda: λx.A[x] function: x:A ⟶ B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] exists: x:A. B[x] member: t ∈ T compose: g squash: T uall: [x:A]. B[x] prop: true: True subtype_rel: A ⊆B uimplies: supposing a guard: {T} iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q implies:  Q bounded-lattice-hom: Hom(l1;l2) lattice-hom: Hom(l1;l2) bdd-distributive-lattice: BoundedDistributiveLattice so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  equal_wf squash_wf true_wf lattice-extend-dl-inc iff_weakening_equal compose_wf free-dl-inc_wf lattice-point_wf subtype_rel_set bounded-lattice-structure_wf lattice-structure_wf lattice-axioms_wf bounded-lattice-structure-subtype bounded-lattice-axioms_wf uall_wf lattice-meet_wf lattice-join_wf deq_wf bdd-distributive-lattice_wf lattice-extend-is-hom
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation dependent_pairFormation functionExtensionality sqequalRule cut applyEquality thin lambdaEquality sqequalHypSubstitution imageElimination introduction extract_by_obid isectElimination hypothesisEquality equalityTransitivity hypothesis equalitySymmetry because_Cache natural_numberEquality imageMemberEquality baseClosed universeEquality independent_isectElimination productElimination independent_functionElimination setElimination rename functionEquality cumulativity instantiate productEquality

Latex:
\mforall{}T:Type.  \mforall{}eq:EqDecider(T).  \mforall{}L:BoundedDistributiveLattice.  \mforall{}eqL:EqDecider(Point(L)).
\mforall{}f:T  {}\mrightarrow{}  Point(L).
    \mexists{}g:Hom(free-dist-lattice(T;  eq);L).  (f  =  (g  o  (\mlambda{}x.free-dl-inc(x))))



Date html generated: 2020_05_20-AM-08_46_16
Last ObjectModification: 2017_07_28-AM-09_14_48

Theory : lattices


Home Index