Nuprl Lemma : free-dl-inc_wf
∀[T:Type]. ∀[eq:EqDecider(T)]. ∀[x:T].  (free-dl-inc(x) ∈ Point(free-dist-lattice(T; eq)))
Proof
Definitions occuring in Statement : 
free-dl-inc: free-dl-inc(x)
, 
free-dist-lattice: free-dist-lattice(T; eq)
, 
lattice-point: Point(l)
, 
deq: EqDecider(T)
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
free-dl-inc: free-dl-inc(x)
, 
top: Top
, 
prop: ℙ
Lemmas referenced : 
free-dl-point, 
fset-antichain-singleton, 
fset-singleton_wf, 
fset_wf, 
assert_wf, 
fset-antichain_wf, 
deq_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
hypothesis, 
hypothesisEquality, 
dependent_set_memberEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
because_Cache, 
universeEquality
Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].  \mforall{}[x:T].    (free-dl-inc(x)  \mmember{}  Point(free-dist-lattice(T;  eq)))
Date html generated:
2020_05_20-AM-08_45_22
Last ObjectModification:
2015_12_28-PM-02_00_30
Theory : lattices
Home
Index