Nuprl Lemma : free-dl-inc_wf

[T:Type]. ∀[eq:EqDecider(T)]. ∀[x:T].  (free-dl-inc(x) ∈ Point(free-dist-lattice(T; eq)))


Proof




Definitions occuring in Statement :  free-dl-inc: free-dl-inc(x) free-dist-lattice: free-dist-lattice(T; eq) lattice-point: Point(l) deq: EqDecider(T) uall: [x:A]. B[x] member: t ∈ T universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T free-dl-inc: free-dl-inc(x) top: Top prop:
Lemmas referenced :  free-dl-point fset-antichain-singleton fset-singleton_wf fset_wf assert_wf fset-antichain_wf deq_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lemma_by_obid sqequalHypSubstitution isectElimination thin isect_memberEquality voidElimination voidEquality hypothesis hypothesisEquality dependent_set_memberEquality axiomEquality equalityTransitivity equalitySymmetry because_Cache universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].  \mforall{}[x:T].    (free-dl-inc(x)  \mmember{}  Point(free-dist-lattice(T;  eq)))



Date html generated: 2020_05_20-AM-08_45_22
Last ObjectModification: 2015_12_28-PM-02_00_30

Theory : lattices


Home Index