Nuprl Lemma : free-DeMorgan-algebra-property

T:Type. ∀eq:EqDecider(T). ∀dm:DeMorganAlgebra. ∀eq2:EqDecider(Point(dm)). ∀f:T ⟶ Point(dm).
  (∃g:dma-hom(free-DeMorgan-algebra(T;eq);dm) [(∀i:T. ((g <i>(f i) ∈ Point(dm)))])


Proof




Definitions occuring in Statement :  free-DeMorgan-algebra: free-DeMorgan-algebra(T;eq) dma-hom: dma-hom(dma1;dma2) DeMorgan-algebra: DeMorganAlgebra dminc: <i> lattice-point: Point(l) deq: EqDecider(T) all: x:A. B[x] sq_exists: x:A [B[x]] apply: a function: x:A ⟶ B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  btrue: tt mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o) mk-bounded-distributive-lattice: mk-bounded-distributive-lattice free-dist-lattice: free-dist-lattice(T; eq) bfalse: ff eq_atom: =a y ifthenelse: if then else fi  record-update: r[x := v] mk-DeMorgan-algebra: mk-DeMorgan-algebra(L;n) free-DeMorgan-algebra: free-DeMorgan-algebra(T;eq) record-select: r.x lattice-point: Point(l) lattice-hom: Hom(l1;l2) bounded-lattice-hom: Hom(l1;l2) dma-hom: dma-hom(dma1;dma2) guard: {T} uimplies: supposing a so_apply: x[s] and: P ∧ Q so_lambda: λ2x.t[x] sq_exists: x:A [B[x]] dminc: <i> compose: g exists: x:A. B[x] free-DeMorgan-lattice: free-DeMorgan-lattice(T;eq) prop: DeMorgan-algebra: DeMorganAlgebra implies:  Q subtype_rel: A ⊆B uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] dmopp: <1-i> top: Top dma-neg: ¬(x) rev_implies:  Q iff: ⇐⇒ Q squash: T true: True bdd-distributive-lattice: BoundedDistributiveLattice cand: c∧ B
Lemmas referenced :  DeMorgan-algebra_wf deq_wf dminc_wf bounded-lattice-structure_wf subtype_rel_transitivity DeMorgan-algebra-structure-subtype bounded-lattice-structure-subtype DeMorgan-algebra-axioms_wf lattice-join_wf lattice-meet_wf uall_wf bounded-lattice-axioms_wf lattice-axioms_wf lattice-structure_wf DeMorgan-algebra-structure_wf subtype_rel_set lattice-point_wf all_wf equal_wf dma-neg_wf DeMorgan-algebra-subtype union-deq_wf free-dist-lattice-property free-dma-hom-is-lattice-hom free-dma-point free-dist-lattice-hom-unique rec_select_update_lemma subtype_rel_self true_wf squash_wf DeMorgan-algebra-laws iff_weakening_equal lattice-1_wf bdd-distributive-lattice_wf free-DeMorgan-lattice_wf lattice-0_wf dm-neg-properties dm-neg_wf istype-universe dmopp_wf dm-neg-opp dm-neg-inc subtype_rel-equal free-DeMorgan-algebra_wf
Rules used in proof :  universeEquality functionEquality functionExtensionality independent_isectElimination productEquality instantiate cumulativity dependent_set_memberFormation inlEquality applyLambdaEquality productElimination independent_functionElimination rename setElimination unionElimination because_Cache equalitySymmetry equalityTransitivity lambdaEquality sqequalRule applyEquality hypothesis isectElimination hypothesisEquality unionEquality thin dependent_functionElimination sqequalHypSubstitution extract_by_obid introduction cut lambdaFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution inrEquality dependent_set_memberEquality hyp_replacement voidEquality voidElimination isect_memberEquality baseClosed imageMemberEquality imageElimination natural_numberEquality independent_pairFormation axiomEquality independent_pairEquality isect_memberFormation lambdaEquality_alt isectEquality universeIsType

Latex:
\mforall{}T:Type.  \mforall{}eq:EqDecider(T).  \mforall{}dm:DeMorganAlgebra.  \mforall{}eq2:EqDecider(Point(dm)).  \mforall{}f:T  {}\mrightarrow{}  Point(dm).
    (\mexists{}g:dma-hom(free-DeMorgan-algebra(T;eq);dm)  [(\mforall{}i:T.  ((g  <i>)  =  (f  i)))])



Date html generated: 2020_05_20-AM-08_56_45
Last ObjectModification: 2020_02_04-PM-04_57_53

Theory : lattices


Home Index