Nuprl Lemma : free-DeMorgan-algebra-property
∀T:Type. ∀eq:EqDecider(T). ∀dm:DeMorganAlgebra. ∀eq2:EqDecider(Point(dm)). ∀f:T ⟶ Point(dm).
  (∃g:dma-hom(free-DeMorgan-algebra(T;eq);dm) [(∀i:T. ((g <i>) = (f i) ∈ Point(dm)))])
Proof
Definitions occuring in Statement : 
free-DeMorgan-algebra: free-DeMorgan-algebra(T;eq)
, 
dma-hom: dma-hom(dma1;dma2)
, 
DeMorgan-algebra: DeMorganAlgebra
, 
dminc: <i>
, 
lattice-point: Point(l)
, 
deq: EqDecider(T)
, 
all: ∀x:A. B[x]
, 
sq_exists: ∃x:A [B[x]]
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
btrue: tt
, 
mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o)
, 
mk-bounded-distributive-lattice: mk-bounded-distributive-lattice, 
free-dist-lattice: free-dist-lattice(T; eq)
, 
bfalse: ff
, 
eq_atom: x =a y
, 
ifthenelse: if b then t else f fi 
, 
record-update: r[x := v]
, 
mk-DeMorgan-algebra: mk-DeMorgan-algebra(L;n)
, 
free-DeMorgan-algebra: free-DeMorgan-algebra(T;eq)
, 
record-select: r.x
, 
lattice-point: Point(l)
, 
lattice-hom: Hom(l1;l2)
, 
bounded-lattice-hom: Hom(l1;l2)
, 
dma-hom: dma-hom(dma1;dma2)
, 
guard: {T}
, 
uimplies: b supposing a
, 
so_apply: x[s]
, 
and: P ∧ Q
, 
so_lambda: λ2x.t[x]
, 
sq_exists: ∃x:A [B[x]]
, 
dminc: <i>
, 
compose: f o g
, 
exists: ∃x:A. B[x]
, 
free-DeMorgan-lattice: free-DeMorgan-lattice(T;eq)
, 
prop: ℙ
, 
DeMorgan-algebra: DeMorganAlgebra
, 
implies: P 
⇒ Q
, 
subtype_rel: A ⊆r B
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
all: ∀x:A. B[x]
, 
dmopp: <1-i>
, 
top: Top
, 
dma-neg: ¬(x)
, 
rev_implies: P 
⇐ Q
, 
iff: P 
⇐⇒ Q
, 
squash: ↓T
, 
true: True
, 
bdd-distributive-lattice: BoundedDistributiveLattice
, 
cand: A c∧ B
Lemmas referenced : 
DeMorgan-algebra_wf, 
deq_wf, 
dminc_wf, 
bounded-lattice-structure_wf, 
subtype_rel_transitivity, 
DeMorgan-algebra-structure-subtype, 
bounded-lattice-structure-subtype, 
DeMorgan-algebra-axioms_wf, 
lattice-join_wf, 
lattice-meet_wf, 
uall_wf, 
bounded-lattice-axioms_wf, 
lattice-axioms_wf, 
lattice-structure_wf, 
DeMorgan-algebra-structure_wf, 
subtype_rel_set, 
lattice-point_wf, 
all_wf, 
equal_wf, 
dma-neg_wf, 
DeMorgan-algebra-subtype, 
union-deq_wf, 
free-dist-lattice-property, 
free-dma-hom-is-lattice-hom, 
free-dma-point, 
free-dist-lattice-hom-unique, 
rec_select_update_lemma, 
subtype_rel_self, 
true_wf, 
squash_wf, 
DeMorgan-algebra-laws, 
iff_weakening_equal, 
lattice-1_wf, 
bdd-distributive-lattice_wf, 
free-DeMorgan-lattice_wf, 
lattice-0_wf, 
dm-neg-properties, 
dm-neg_wf, 
istype-universe, 
dmopp_wf, 
dm-neg-opp, 
dm-neg-inc, 
subtype_rel-equal, 
free-DeMorgan-algebra_wf
Rules used in proof : 
universeEquality, 
functionEquality, 
functionExtensionality, 
independent_isectElimination, 
productEquality, 
instantiate, 
cumulativity, 
dependent_set_memberFormation, 
inlEquality, 
applyLambdaEquality, 
productElimination, 
independent_functionElimination, 
rename, 
setElimination, 
unionElimination, 
because_Cache, 
equalitySymmetry, 
equalityTransitivity, 
lambdaEquality, 
sqequalRule, 
applyEquality, 
hypothesis, 
isectElimination, 
hypothesisEquality, 
unionEquality, 
thin, 
dependent_functionElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
introduction, 
cut, 
lambdaFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
inrEquality, 
dependent_set_memberEquality, 
hyp_replacement, 
voidEquality, 
voidElimination, 
isect_memberEquality, 
baseClosed, 
imageMemberEquality, 
imageElimination, 
natural_numberEquality, 
independent_pairFormation, 
axiomEquality, 
independent_pairEquality, 
isect_memberFormation, 
lambdaEquality_alt, 
isectEquality, 
universeIsType
Latex:
\mforall{}T:Type.  \mforall{}eq:EqDecider(T).  \mforall{}dm:DeMorganAlgebra.  \mforall{}eq2:EqDecider(Point(dm)).  \mforall{}f:T  {}\mrightarrow{}  Point(dm).
    (\mexists{}g:dma-hom(free-DeMorgan-algebra(T;eq);dm)  [(\mforall{}i:T.  ((g  <i>)  =  (f  i)))])
Date html generated:
2020_05_20-AM-08_56_45
Last ObjectModification:
2020_02_04-PM-04_57_53
Theory : lattices
Home
Index