Nuprl Lemma : dm-neg-inc
∀[T:Type]. ∀[eq:EqDecider(T)]. ∀[i:T].  (¬(<i>) = <1-i> ∈ Point(free-DeMorgan-lattice(T;eq)))
Proof
Definitions occuring in Statement : 
dm-neg: ¬(x)
, 
dmopp: <1-i>
, 
dminc: <i>
, 
free-DeMorgan-lattice: free-DeMorgan-lattice(T;eq)
, 
lattice-point: Point(l)
, 
deq: EqDecider(T)
, 
uall: ∀[x:A]. B[x]
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
free-DeMorgan-lattice: free-DeMorgan-lattice(T;eq)
, 
dm-neg: ¬(x)
, 
free-dl-inc: free-dl-inc(x)
, 
free-dml-deq: free-dml-deq(T;eq)
, 
dminc: <i>
, 
squash: ↓T
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
, 
top: Top
, 
bdd-distributive-lattice: BoundedDistributiveLattice
, 
so_lambda: λ2x.t[x]
, 
and: P ∧ Q
, 
so_apply: x[s]
, 
uimplies: b supposing a
, 
true: True
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
implies: P 
⇒ Q
, 
dmopp: <1-i>
, 
fset-singleton: {x}
, 
cons: [a / b]
Lemmas referenced : 
deq_wf, 
free-dl-inc_wf, 
union-deq_wf, 
equal_wf, 
squash_wf, 
true_wf, 
lattice-point_wf, 
free-dist-lattice_wf, 
lattice-extend-dl-inc, 
opposite-lattice_wf, 
free-DeMorgan-lattice_wf, 
opposite-lattice-point, 
free-dml-deq_wf, 
subtype_rel-equal, 
subtype_rel_set, 
bounded-lattice-structure_wf, 
lattice-structure_wf, 
lattice-axioms_wf, 
bounded-lattice-structure-subtype, 
bounded-lattice-axioms_wf, 
uall_wf, 
lattice-meet_wf, 
lattice-join_wf, 
dmopp_wf, 
iff_weakening_equal
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
hypothesis, 
hypothesisEquality, 
sqequalRule, 
sqequalHypSubstitution, 
isect_memberEquality, 
isectElimination, 
thin, 
axiomEquality, 
because_Cache, 
extract_by_obid, 
cumulativity, 
universeEquality, 
lambdaEquality, 
unionElimination, 
unionEquality, 
inrEquality, 
inlEquality, 
applyEquality, 
imageElimination, 
equalityTransitivity, 
equalitySymmetry, 
voidElimination, 
voidEquality, 
instantiate, 
productEquality, 
independent_isectElimination, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
productElimination, 
independent_functionElimination
Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].  \mforall{}[i:T].    (\mneg{}(<i>)  =  ə-i>)
Date html generated:
2020_05_20-AM-08_54_48
Last ObjectModification:
2017_07_28-AM-09_16_52
Theory : lattices
Home
Index