Nuprl Lemma : free-dml-deq_wf
∀[T:Type]. ∀[eq:EqDecider(T)].  (free-dml-deq(T;eq) ∈ EqDecider(Point(free-DeMorgan-lattice(T;eq))))
Proof
Definitions occuring in Statement : 
free-dml-deq: free-dml-deq(T;eq)
, 
free-DeMorgan-lattice: free-DeMorgan-lattice(T;eq)
, 
lattice-point: Point(l)
, 
deq: EqDecider(T)
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
free-DeMorgan-lattice: free-DeMorgan-lattice(T;eq)
, 
top: Top
, 
free-dml-deq: free-dml-deq(T;eq)
, 
subtype_rel: A ⊆r B
, 
prop: ℙ
, 
uimplies: b supposing a
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
Lemmas referenced : 
free-dl-point, 
deq-fset_wf, 
fset_wf, 
union-deq_wf, 
strong-subtype-deq-subtype, 
assert_wf, 
fset-antichain_wf, 
strong-subtype-set2, 
deq_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
hypothesis, 
unionEquality, 
hypothesisEquality, 
applyEquality, 
setEquality, 
independent_isectElimination, 
lambdaEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
because_Cache, 
universeEquality
Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].    (free-dml-deq(T;eq)  \mmember{}  EqDecider(Point(free-DeMorgan-lattice(T;eq))))
Date html generated:
2020_05_20-AM-08_53_48
Last ObjectModification:
2015_12_28-PM-01_56_52
Theory : lattices
Home
Index