Nuprl Lemma : opposite-lattice-point
∀[L:Top]. (Point(opposite-lattice(L)) ~ Point(L))
Proof
Definitions occuring in Statement : 
opposite-lattice: opposite-lattice(L)
, 
lattice-point: Point(l)
, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
sqequal: s ~ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
lattice-point: Point(l)
, 
opposite-lattice: opposite-lattice(L)
, 
so_lambda: λ2x y.t[x; y]
, 
mk-bounded-distributive-lattice: mk-bounded-distributive-lattice, 
mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o)
, 
all: ∀x:A. B[x]
, 
top: Top
, 
eq_atom: x =a y
, 
ifthenelse: if b then t else f fi 
, 
bfalse: ff
, 
btrue: tt
Lemmas referenced : 
rec_select_update_lemma, 
top_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
lemma_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
hypothesis, 
axiomSqEquality
Latex:
\mforall{}[L:Top].  (Point(opposite-lattice(L))  \msim{}  Point(L))
Date html generated:
2020_05_20-AM-08_47_07
Last ObjectModification:
2015_12_28-PM-02_00_54
Theory : lattices
Home
Index