Nuprl Lemma : opposite-lattice-point

[L:Top]. (Point(opposite-lattice(L)) Point(L))


Proof




Definitions occuring in Statement :  opposite-lattice: opposite-lattice(L) lattice-point: Point(l) uall: [x:A]. B[x] top: Top sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T lattice-point: Point(l) opposite-lattice: opposite-lattice(L) so_lambda: λ2y.t[x; y] mk-bounded-distributive-lattice: mk-bounded-distributive-lattice mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o) all: x:A. B[x] top: Top eq_atom: =a y ifthenelse: if then else fi  bfalse: ff btrue: tt
Lemmas referenced :  rec_select_update_lemma top_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lemma_by_obid sqequalHypSubstitution dependent_functionElimination thin isect_memberEquality voidElimination voidEquality hypothesis axiomSqEquality

Latex:
\mforall{}[L:Top].  (Point(opposite-lattice(L))  \msim{}  Point(L))



Date html generated: 2020_05_20-AM-08_47_07
Last ObjectModification: 2015_12_28-PM-02_00_54

Theory : lattices


Home Index