Nuprl Lemma : dmopp_wf
∀[T:Type]. ∀[eq:EqDecider(T)]. ∀[i:T].  (<1-i> ∈ Point(free-DeMorgan-lattice(T;eq)))
Proof
Definitions occuring in Statement : 
dmopp: <1-i>
, 
free-DeMorgan-lattice: free-DeMorgan-lattice(T;eq)
, 
lattice-point: Point(l)
, 
deq: EqDecider(T)
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
free-DeMorgan-lattice: free-DeMorgan-lattice(T;eq)
, 
dmopp: <1-i>
Lemmas referenced : 
free-dl-inc_wf, 
union-deq_wf, 
deq_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
unionEquality, 
hypothesisEquality, 
hypothesis, 
inrEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality, 
because_Cache, 
universeEquality
Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].  \mforall{}[i:T].    (ə-i>  \mmember{}  Point(free-DeMorgan-lattice(T;eq)))
Date html generated:
2020_05_20-AM-08_54_17
Last ObjectModification:
2015_12_28-PM-01_56_26
Theory : lattices
Home
Index