Nuprl Lemma : free-dist-lattice-hom-unique
∀T:Type. ∀eq:EqDecider(T). ∀L:BoundedDistributiveLattice. ∀eqL:EqDecider(Point(L)). ∀f:T ⟶ Point(L).
∀g,h:Hom(free-dist-lattice(T; eq);L).
  ((f = (g o (λx.free-dl-inc(x))) ∈ (T ⟶ Point(L)))
  
⇒ (f = (h o (λx.free-dl-inc(x))) ∈ (T ⟶ Point(L)))
  
⇒ (g = h ∈ Hom(free-dist-lattice(T; eq);L)))
Proof
Definitions occuring in Statement : 
free-dl-inc: free-dl-inc(x)
, 
free-dist-lattice: free-dist-lattice(T; eq)
, 
bdd-distributive-lattice: BoundedDistributiveLattice
, 
bounded-lattice-hom: Hom(l1;l2)
, 
lattice-point: Point(l)
, 
deq: EqDecider(T)
, 
compose: f o g
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
lambda: λx.A[x]
, 
function: x:A ⟶ B[x]
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
, 
bdd-distributive-lattice: BoundedDistributiveLattice
, 
so_lambda: λ2x.t[x]
, 
and: P ∧ Q
, 
so_apply: x[s]
, 
bounded-lattice-hom: Hom(l1;l2)
, 
lattice-hom: Hom(l1;l2)
, 
compose: f o g
Lemmas referenced : 
free-dist-lattice-hom-unique2, 
equal_wf, 
lattice-point_wf, 
subtype_rel_set, 
bounded-lattice-structure_wf, 
lattice-structure_wf, 
lattice-axioms_wf, 
bounded-lattice-structure-subtype, 
bounded-lattice-axioms_wf, 
uall_wf, 
lattice-meet_wf, 
lattice-join_wf, 
compose_wf, 
free-dist-lattice_wf, 
free-dl-inc_wf, 
bounded-lattice-hom_wf, 
bdd-distributive-lattice_wf, 
deq_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
independent_isectElimination, 
hypothesis, 
because_Cache, 
functionEquality, 
cumulativity, 
applyEquality, 
sqequalRule, 
instantiate, 
lambdaEquality, 
productEquality, 
universeEquality, 
setElimination, 
rename, 
equalityUniverse, 
levelHypothesis, 
equalityTransitivity, 
equalitySymmetry
Latex:
\mforall{}T:Type.  \mforall{}eq:EqDecider(T).  \mforall{}L:BoundedDistributiveLattice.  \mforall{}eqL:EqDecider(Point(L)).
\mforall{}f:T  {}\mrightarrow{}  Point(L).  \mforall{}g,h:Hom(free-dist-lattice(T;  eq);L).
    ((f  =  (g  o  (\mlambda{}x.free-dl-inc(x))))  {}\mRightarrow{}  (f  =  (h  o  (\mlambda{}x.free-dl-inc(x))))  {}\mRightarrow{}  (g  =  h))
Date html generated:
2020_05_20-AM-08_46_55
Last ObjectModification:
2015_12_28-PM-01_59_45
Theory : lattices
Home
Index