Nuprl Lemma : bounded-lattice-hom_wf
∀[l1,l2:BoundedLatticeStructure].  (Hom(l1;l2) ∈ Type)
Proof
Definitions occuring in Statement : 
bounded-lattice-hom: Hom(l1;l2)
, 
bounded-lattice-structure: BoundedLatticeStructure
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
bounded-lattice-hom: Hom(l1;l2)
, 
subtype_rel: A ⊆r B
, 
lattice-hom: Hom(l1;l2)
, 
and: P ∧ Q
, 
prop: ℙ
Lemmas referenced : 
lattice-hom_wf, 
bounded-lattice-structure-subtype, 
and_wf, 
equal_wf, 
lattice-point_wf, 
lattice-0_wf, 
lattice-1_wf, 
bounded-lattice-structure_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
setEquality, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
applyEquality, 
hypothesis, 
because_Cache, 
setElimination, 
rename, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality
Latex:
\mforall{}[l1,l2:BoundedLatticeStructure].    (Hom(l1;l2)  \mmember{}  Type)
Date html generated:
2020_05_20-AM-08_24_51
Last ObjectModification:
2015_12_28-PM-02_03_19
Theory : lattices
Home
Index