Nuprl Lemma : bounded-lattice-hom_wf

[l1,l2:BoundedLatticeStructure].  (Hom(l1;l2) ∈ Type)


Proof




Definitions occuring in Statement :  bounded-lattice-hom: Hom(l1;l2) bounded-lattice-structure: BoundedLatticeStructure uall: [x:A]. B[x] member: t ∈ T universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T bounded-lattice-hom: Hom(l1;l2) subtype_rel: A ⊆B lattice-hom: Hom(l1;l2) and: P ∧ Q prop:
Lemmas referenced :  lattice-hom_wf bounded-lattice-structure-subtype and_wf equal_wf lattice-point_wf lattice-0_wf lattice-1_wf bounded-lattice-structure_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule setEquality lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality applyEquality hypothesis because_Cache setElimination rename axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality

Latex:
\mforall{}[l1,l2:BoundedLatticeStructure].    (Hom(l1;l2)  \mmember{}  Type)



Date html generated: 2020_05_20-AM-08_24_51
Last ObjectModification: 2015_12_28-PM-02_03_19

Theory : lattices


Home Index