Nuprl Lemma : lattice-hom_wf

[l1,l2:LatticeStructure].  (Hom(l1;l2) ∈ Type)


Proof




Definitions occuring in Statement :  lattice-hom: Hom(l1;l2) lattice-structure: LatticeStructure uall: [x:A]. B[x] member: t ∈ T universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T lattice-hom: Hom(l1;l2) so_lambda: λ2x.t[x] so_apply: x[s] and: P ∧ Q prop:
Lemmas referenced :  lattice-point_wf uall_wf and_wf equal_wf lattice-meet_wf lattice-join_wf lattice-structure_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule setEquality functionEquality lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis lambdaEquality applyEquality axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality because_Cache

Latex:
\mforall{}[l1,l2:LatticeStructure].    (Hom(l1;l2)  \mmember{}  Type)



Date html generated: 2020_05_20-AM-08_23_48
Last ObjectModification: 2015_12_28-PM-02_03_39

Theory : lattices


Home Index