Nuprl Lemma : free-DeMorgan-algebra_wf

[T:Type]. ∀[eq:EqDecider(T)].  (free-DeMorgan-algebra(T;eq) ∈ DeMorganAlgebra)


Proof




Definitions occuring in Statement :  free-DeMorgan-algebra: free-DeMorgan-algebra(T;eq) DeMorgan-algebra: DeMorganAlgebra deq: EqDecider(T) uall: [x:A]. B[x] member: t ∈ T universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T free-DeMorgan-algebra: free-DeMorgan-algebra(T;eq) subtype_rel: A ⊆B bdd-distributive-lattice: BoundedDistributiveLattice so_lambda: λ2x.t[x] prop: and: P ∧ Q so_apply: x[s] uimplies: supposing a cand: c∧ B all: x:A. B[x] squash: T true: True guard: {T} iff: ⇐⇒ Q rev_implies:  Q implies:  Q or: P ∨ Q
Lemmas referenced :  mk-DeMorgan-algebra_wf free-DeMorgan-lattice_wf dm-neg_wf lattice-point_wf subtype_rel_set bounded-lattice-structure_wf lattice-structure_wf lattice-axioms_wf bounded-lattice-structure-subtype bounded-lattice-axioms_wf uall_wf equal_wf lattice-meet_wf lattice-join_wf squash_wf true_wf dm-neg-neg iff_weakening_equal dm-neg-properties all_wf deq_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin cumulativity hypothesisEquality hypothesis lambdaEquality because_Cache applyEquality instantiate productEquality universeEquality independent_isectElimination lambdaFormation imageElimination equalityTransitivity equalitySymmetry natural_numberEquality imageMemberEquality baseClosed productElimination independent_functionElimination independent_pairFormation inlFormation axiomEquality isect_memberEquality

Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].    (free-DeMorgan-algebra(T;eq)  \mmember{}  DeMorganAlgebra)



Date html generated: 2020_05_20-AM-08_56_20
Last ObjectModification: 2017_07_28-AM-09_17_21

Theory : lattices


Home Index