Nuprl Lemma : mk-DeMorgan-algebra_wf
∀[L:BoundedDistributiveLattice]. ∀[n:Point(L) ⟶ Point(L)].
  mk-DeMorgan-algebra(L;n) ∈ DeMorganAlgebra 
  supposing (∀x:Point(L). ((n (n x)) = x ∈ Point(L)))
  ∧ ((∀x,y:Point(L).  ((n x ∧ y) = n x ∨ n y ∈ Point(L))) ∨ (∀x,y:Point(L).  ((n x ∨ y) = n x ∧ n y ∈ Point(L))))
Proof
Definitions occuring in Statement : 
mk-DeMorgan-algebra: mk-DeMorgan-algebra(L;n)
, 
DeMorgan-algebra: DeMorganAlgebra
, 
bdd-distributive-lattice: BoundedDistributiveLattice
, 
lattice-join: a ∨ b
, 
lattice-meet: a ∧ b
, 
lattice-point: Point(l)
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
or: P ∨ Q
, 
and: P ∧ Q
, 
member: t ∈ T
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
and: P ∧ Q
, 
all: ∀x:A. B[x]
, 
subtype_rel: A ⊆r B
, 
bdd-distributive-lattice: BoundedDistributiveLattice
, 
so_lambda: λ2x.t[x]
, 
prop: ℙ
, 
so_apply: x[s]
, 
or: P ∨ Q
, 
rev_implies: P 
⇐ Q
, 
not: ¬A
, 
iff: P 
⇐⇒ Q
, 
bfalse: ff
, 
top: Top
, 
guard: {T}
, 
sq_type: SQType(T)
, 
uiff: uiff(P;Q)
, 
it: ⋅
, 
unit: Unit
, 
bool: 𝔹
, 
implies: P 
⇒ Q
, 
record: record(x.T[x])
, 
record-update: r[x := v]
, 
btrue: tt
, 
ifthenelse: if b then t else f fi 
, 
eq_atom: x =a y
, 
record-select: r.x
, 
record+: record+, 
bounded-lattice-structure: BoundedLatticeStructure
, 
lattice-point: Point(l)
, 
DeMorgan-algebra-structure: DeMorganAlgebraStructure
, 
false: False
, 
lattice-meet: a ∧ b
, 
lattice-join: a ∨ b
, 
lattice-1: 1
, 
lattice-0: 0
, 
true: True
, 
squash: ↓T
, 
cand: A c∧ B
, 
DeMorgan-algebra: DeMorganAlgebra
, 
mk-DeMorgan-algebra: mk-DeMorgan-algebra(L;n)
, 
dma-neg: ¬(x)
, 
DeMorgan-algebra-axioms: DeMorgan-algebra-axioms(dma)
Lemmas referenced : 
lattice-point_wf, 
subtype_rel_set, 
bounded-lattice-structure_wf, 
lattice-structure_wf, 
lattice-axioms_wf, 
bounded-lattice-structure-subtype, 
bounded-lattice-axioms_wf, 
uall_wf, 
equal_wf, 
lattice-meet_wf, 
lattice-join_wf, 
bdd-distributive-lattice_wf, 
assert_of_bnot, 
eqff_to_assert, 
iff_weakening_uiff, 
not_wf, 
bnot_wf, 
iff_transitivity, 
rec_select_update_lemma, 
subtype_base_sq, 
assert_of_eq_atom, 
eqtt_to_assert, 
atom_subtype_base, 
assert_wf, 
bool_wf, 
equal-wf-base, 
uiff_transitivity, 
eq_atom_wf, 
subtype_rel_self, 
istype-void, 
istype-assert, 
lattice-1_wf, 
lattice-0_wf, 
top-subtype-record, 
DeMorgan-algebra-axioms_wf, 
DeMorgan-algebra-structure_wf, 
subtype_rel_transitivity, 
DeMorgan-algebra-structure-subtype, 
bdd-distributive-lattice-subtype-distributive-lattice, 
distributive-lattice-distrib, 
iff_weakening_equal, 
true_wf, 
squash_wf, 
implies-DeMorgan-algebra-axioms
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
sqequalHypSubstitution, 
productElimination, 
thin, 
hypothesis, 
sqequalRule, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
productIsType, 
functionIsType, 
universeIsType, 
extract_by_obid, 
isectElimination, 
hypothesisEquality, 
applyEquality, 
instantiate, 
lambdaEquality_alt, 
productEquality, 
cumulativity, 
inhabitedIsType, 
because_Cache, 
independent_isectElimination, 
equalityIsType1, 
unionIsType, 
isect_memberEquality_alt, 
isectIsTypeImplies, 
rename, 
setElimination, 
impliesFunctionality, 
independent_pairFormation, 
voidEquality, 
voidElimination, 
isect_memberEquality, 
dependent_functionElimination, 
independent_functionElimination, 
atomEquality, 
baseClosed, 
closedConclusion, 
baseApply, 
equalityElimination, 
unionElimination, 
lambdaFormation, 
functionExtensionality, 
dependentIntersection_memberEquality, 
functionEquality, 
universeEquality, 
tokenEquality, 
dependentIntersectionEqElimination, 
dependentIntersectionElimination, 
dependent_set_memberEquality_alt, 
isectIsType, 
lambdaFormation_alt, 
equalityIsType4, 
isect_memberFormation, 
imageMemberEquality, 
natural_numberEquality, 
imageElimination, 
lambdaEquality, 
dependent_set_memberEquality
Latex:
\mforall{}[L:BoundedDistributiveLattice].  \mforall{}[n:Point(L)  {}\mrightarrow{}  Point(L)].
    mk-DeMorgan-algebra(L;n)  \mmember{}  DeMorganAlgebra 
    supposing  (\mforall{}x:Point(L).  ((n  (n  x))  =  x))
    \mwedge{}  ((\mforall{}x,y:Point(L).    ((n  x  \mwedge{}  y)  =  n  x  \mvee{}  n  y))  \mvee{}  (\mforall{}x,y:Point(L).    ((n  x  \mvee{}  y)  =  n  x  \mwedge{}  n  y)))
Date html generated:
2020_05_20-AM-08_55_52
Last ObjectModification:
2018_11_12-AM-09_22_11
Theory : lattices
Home
Index