Nuprl Lemma : free-dma-point

[T,eq:Top].  (Point(free-DeMorgan-algebra(T;eq)) Point(free-DeMorgan-lattice(T;eq)))


Proof




Definitions occuring in Statement :  free-DeMorgan-algebra: free-DeMorgan-algebra(T;eq) free-DeMorgan-lattice: free-DeMorgan-lattice(T;eq) lattice-point: Point(l) uall: [x:A]. B[x] top: Top sqequal: t
Definitions unfolded in proof :  lattice-point: Point(l) free-DeMorgan-algebra: free-DeMorgan-algebra(T;eq) mk-DeMorgan-algebra: mk-DeMorgan-algebra(L;n) all: x:A. B[x] member: t ∈ T top: Top eq_atom: =a y ifthenelse: if then else fi  bfalse: ff uall: [x:A]. B[x]
Lemmas referenced :  rec_select_update_lemma top_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep cut lemma_by_obid sqequalHypSubstitution dependent_functionElimination thin isect_memberEquality voidElimination voidEquality hypothesis isect_memberFormation introduction axiomSqEquality isectElimination hypothesisEquality because_Cache

Latex:
\mforall{}[T,eq:Top].    (Point(free-DeMorgan-algebra(T;eq))  \msim{}  Point(free-DeMorgan-lattice(T;eq)))



Date html generated: 2020_05_20-AM-08_56_24
Last ObjectModification: 2015_12_28-PM-01_55_09

Theory : lattices


Home Index