Nuprl Lemma : cubical-term-equal

[X:j⊢]. ∀[A:{X ⊢ _}]. ∀[u:{X ⊢ _:A}]. ∀[z:I:fset(ℕ) ⟶ a:X(I) ⟶ A(a)].
  z ∈ {X ⊢ _:A} supposing z ∈ (I:fset(ℕ) ⟶ a:X(I) ⟶ A(a))


Proof




Definitions occuring in Statement :  cubical-term: {X ⊢ _:A} cubical-type-at: A(a) cubical-type: {X ⊢ _} I_cube: A(I) cubical_set: CubicalSet fset: fset(T) nat: uimplies: supposing a uall: [x:A]. B[x] function: x:A ⟶ B[x] equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T cubical_set: CubicalSet cube-cat: CubeCat all: x:A. B[x] I_cube: A(I) I_set: A(I) cubical-type-at: A(a) presheaf-type-at: A(a)
Lemmas referenced :  presheaf-term-equal cube-cat_wf cubical-type-sq-presheaf-type cubical-term-sq-presheaf-term cat_ob_pair_lemma
Rules used in proof :  cut introduction extract_by_obid sqequalHypSubstitution sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isectElimination thin hypothesis sqequalRule Error :memTop,  dependent_functionElimination

Latex:
\mforall{}[X:j\mvdash{}].  \mforall{}[A:\{X  \mvdash{}  \_\}].  \mforall{}[u:\{X  \mvdash{}  \_:A\}].  \mforall{}[z:I:fset(\mBbbN{})  {}\mrightarrow{}  a:X(I)  {}\mrightarrow{}  A(a)].    u  =  z  supposing  u  =  z



Date html generated: 2020_05_20-PM-01_52_23
Last ObjectModification: 2020_04_03-PM-08_27_54

Theory : cubical!type!theory


Home Index