Nuprl Lemma : cube+_interval-1

[I:fset(ℕ)]. ∀[i:ℕ].  (cube+(I;i) [1(𝕀)] = <(i1)> ∈ formal-cube(I) j⟶ formal-cube(I+i))


Proof




Definitions occuring in Statement :  cube+: cube+(I;i) interval-1: 1(𝕀) interval-type: 𝕀 csm-id-adjoin: [u] cube-context-adjoin: X.A csm-comp: F context-map: <rho> cube_set_map: A ⟶ B formal-cube: formal-cube(I) nc-1: (i1) add-name: I+i fset: fset(T) nat: uall: [x:A]. B[x] equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] I_cube: A(I) functor-ob: ob(F) pi1: fst(t) formal-cube: formal-cube(I) names-hom: I ⟶ J subtype_rel: A ⊆B uimplies: supposing a context-map: <rho> cube+: cube+(I;i) interval-1: 1(𝕀) csm-id-adjoin: [u] csm-comp: F compose: g csm-adjoin: (s;u) csm-id: 1(X) csm-ap: (s)x nc-1: (i1) names: names(I) nat: implies:  Q bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) and: P ∧ Q ifthenelse: if then else fi  bfalse: ff exists: x:A. B[x] or: P ∨ Q sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b false: False
Lemmas referenced :  istype-nat fset_wf nat_wf csm-equal formal-cube_wf1 add-name_wf csm-comp_wf cube-context-adjoin_wf interval-type_wf csm-id-adjoin_wf interval-1_wf cube+_wf context-map_wf nc-1_wf I_cube_wf I_cube_pair_redex_lemma arrow_pair_lemma names_wf nh-comp-sq eq_int_wf eqtt_to_assert assert_of_eq_int eqff_to_assert bool_cases_sqequal subtype_base_sq bool_wf bool_subtype_base assert-bnot neg_assert_of_eq_int dM1-sq-singleton-empty dM-lift-1 subtype_rel_self names-hom_wf not-added-name dM-lift-inc
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut hypothesis extract_by_obid sqequalRule sqequalHypSubstitution isect_memberEquality_alt isectElimination thin hypothesisEquality axiomEquality isectIsTypeImplies inhabitedIsType universeIsType instantiate dependent_functionElimination because_Cache applyEquality independent_isectElimination functionExtensionality Error :memTop,  setElimination rename lambdaFormation_alt unionElimination equalityElimination equalityTransitivity equalitySymmetry productElimination dependent_pairFormation_alt equalityIstype promote_hyp cumulativity independent_functionElimination voidElimination

Latex:
\mforall{}[I:fset(\mBbbN{})].  \mforall{}[i:\mBbbN{}].    (cube+(I;i)  o  [1(\mBbbI{})]  =  <(i1)>)



Date html generated: 2020_05_20-PM-02_39_23
Last ObjectModification: 2020_04_04-PM-02_52_43

Theory : cubical!type!theory


Home Index