Nuprl Lemma : comp-fun-to-comp-op_wf1

Gamma:j⊢. ∀A:{Gamma ⊢ _}.
  ∀[comp:composition-function{j:l,i:l}(Gamma;A)]
    (cfun-to-cop(Gamma;A;comp) ∈ I:fset(ℕ)
     ⟶ i:{i:ℕ| ¬i ∈ I} 
     ⟶ rho:Gamma(I+i)
     ⟶ phi:𝔽(I)
     ⟶ u:{I+i,s(phi) ⊢ _:(A)<rho> iota}
     ⟶ cubical-path-0(Gamma;A;I;i;rho;phi;u)
     ⟶ cubical-path-1(Gamma;A;I;i;rho;phi;u))


Proof




Definitions occuring in Statement :  comp-fun-to-comp-op: cfun-to-cop(Gamma;A;comp) composition-function: composition-function{j:l,i:l}(Gamma;A) cubical-path-1: cubical-path-1(Gamma;A;I;i;rho;phi;u) cubical-path-0: cubical-path-0(Gamma;A;I;i;rho;phi;u) cubical-term: {X ⊢ _:A} csm-ap-type: (AF)s cubical-type: {X ⊢ _} subset-iota: iota cubical-subset: I,psi face-presheaf: 𝔽 csm-comp: F context-map: <rho> formal-cube: formal-cube(I) cube-set-restriction: f(s) I_cube: A(I) cubical_set: CubicalSet nc-s: s add-name: I+i fset-member: a ∈ s fset: fset(T) int-deq: IntDeq nat: uall: [x:A]. B[x] all: x:A. B[x] not: ¬A member: t ∈ T set: {x:A| B[x]}  function: x:A ⟶ B[x]
Definitions unfolded in proof :  all: x:A. B[x] uall: [x:A]. B[x] comp-fun-to-comp-op: cfun-to-cop(Gamma;A;comp) member: t ∈ T subtype_rel: A ⊆B uimplies: supposing a nat: ge: i ≥  decidable: Dec(P) or: P ∨ Q not: ¬A implies:  Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False and: P ∧ Q prop: so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  constrained-cubical-term-to-cubical-path-1 comp-fun-to-comp-op1_wf cubical-path-0_wf cubical-type-cumulativity2 cubical-term_wf cubical-subset_wf add-name_wf cube-set-restriction_wf face-presheaf_wf2 nc-s_wf f-subset-add-name csm-ap-type_wf cubical_set_cumulativity-i-j cubical-type-cumulativity csm-comp_wf formal-cube_wf1 subset-iota_wf context-map_wf I_cube_wf nat_properties decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf istype-int int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf istype-le istype-nat fset-member_wf nat_wf int-deq_wf strong-subtype-deq-subtype strong-subtype-set3 le_wf strong-subtype-self istype-void fset_wf composition-function_wf cubical-type_wf cubical_set_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt isect_memberFormation_alt lambdaEquality_alt cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality dependent_functionElimination applyEquality hypothesis universeIsType instantiate because_Cache sqequalRule setElimination rename independent_isectElimination dependent_set_memberEquality_alt natural_numberEquality unionElimination approximateComputation independent_functionElimination dependent_pairFormation_alt int_eqEquality Error :memTop,  independent_pairFormation voidElimination setIsType functionIsType intEquality

Latex:
\mforall{}Gamma:j\mvdash{}.  \mforall{}A:\{Gamma  \mvdash{}  \_\}.
    \mforall{}[comp:composition-function\{j:l,i:l\}(Gamma;A)]
        (cfun-to-cop(Gamma;A;comp)  \mmember{}  I:fset(\mBbbN{})
          {}\mrightarrow{}  i:\{i:\mBbbN{}|  \mneg{}i  \mmember{}  I\} 
          {}\mrightarrow{}  rho:Gamma(I+i)
          {}\mrightarrow{}  phi:\mBbbF{}(I)
          {}\mrightarrow{}  u:\{I+i,s(phi)  \mvdash{}  \_:(A)<rho>  o  iota\}
          {}\mrightarrow{}  cubical-path-0(Gamma;A;I;i;rho;phi;u)
          {}\mrightarrow{}  cubical-path-1(Gamma;A;I;i;rho;phi;u))



Date html generated: 2020_05_20-PM-04_29_50
Last ObjectModification: 2020_04_11-AM-10_04_10

Theory : cubical!type!theory


Home Index