Nuprl Lemma : constrained-cubical-term-to-cubical-path-1

[Gamma:j⊢]. ∀[A:{Gamma ⊢ _}]. ∀[I:fset(ℕ)]. ∀[i:{i:ℕ| ¬i ∈ I} ]. ∀[rho:Gamma(I+i)].
  ∀phi:𝔽(I)
    ∀[u:{I+i,s(phi) ⊢ _:(A)<rho> iota}].
    ∀[v:{formal-cube(I) ⊢ _:((A)<rho> cube+(I;i))[1(𝕀)][canonical-section(();𝔽;I;⋅;phi) |⟶ ((u)cube+(I;i))[1(𝕀)]]}].
      (v(1) ∈ cubical-path-1(Gamma;A;I;i;rho;phi;u))


Proof




Definitions occuring in Statement :  cubical-path-1: cubical-path-1(Gamma;A;I;i;rho;phi;u) constrained-cubical-term: {Gamma ⊢ _:A[phi |⟶ t]} context-subset: Gamma, phi face-type: 𝔽 cube+: cube+(I;i) interval-1: 1(𝕀) interval-type: 𝕀 csm-id-adjoin: [u] cube-context-adjoin: X.A csm-ap-term: (t)s canonical-section: canonical-section(Gamma;A;I;rho;a) cubical-term-at: u(a) cubical-term: {X ⊢ _:A} csm-ap-type: (AF)s cubical-type: {X ⊢ _} subset-iota: iota cubical-subset: I,psi face-presheaf: 𝔽 csm-comp: F context-map: <rho> trivial-cube-set: () formal-cube: formal-cube(I) cube-set-restriction: f(s) I_cube: A(I) cubical_set: CubicalSet nc-s: s add-name: I+i nh-id: 1 fset-member: a ∈ s fset: fset(T) int-deq: IntDeq nat: it: uall: [x:A]. B[x] all: x:A. B[x] not: ¬A member: t ∈ T set: {x:A| B[x]} 
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] uimplies: supposing a nat: ge: i ≥  decidable: Dec(P) or: P ∨ Q not: ¬A implies:  Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False and: P ∧ Q prop: subtype_rel: A ⊆B so_lambda: λ2x.t[x] so_apply: x[s] squash: T true: True guard: {T} iff: ⇐⇒ Q rev_implies:  Q canonical-section: canonical-section(Gamma;A;I;rho;a) cubical-term-at: u(a) lattice-point: Point(l) record-select: r.x face_lattice: face_lattice(I) face-lattice: face-lattice(T;eq) free-dist-lattice-with-constraints: free-dist-lattice-with-constraints(T;eq;x.Cs[x]) constrained-antichain-lattice: constrained-antichain-lattice(T;eq;P) mk-bounded-distributive-lattice: mk-bounded-distributive-lattice mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o) record-update: r[x := v] ifthenelse: if then else fi  eq_atom: =a y bfalse: ff btrue: tt I_cube: A(I) functor-ob: ob(F) pi1: fst(t) face-presheaf: 𝔽 cube_set_map: A ⟶ B psc_map: A ⟶ B nat-trans: nat-trans(C;D;F;G) cat-ob: cat-ob(C) op-cat: op-cat(C) spreadn: spread4 cube-cat: CubeCat fset: fset(T) quotient: x,y:A//B[x; y] cat-arrow: cat-arrow(C) pi2: snd(t) type-cat: TypeCat names-hom: I ⟶ J cat-comp: cat-comp(C) compose: g formal-cube: formal-cube(I) subset-iota: iota csm-comp: F context-map: <rho> cubical-type: {X ⊢ _} interval-type: 𝕀 csm-ap-type: (AF)s interval-0: 0(𝕀) csm-id-adjoin: [u] csm-id: 1(X) csm-adjoin: (s;u) csm-ap: (s)x unit: Unit trivial-cube-set: () cubical-type-at: A(a) face-type: 𝔽 constant-cubical-type: (X) constrained-cubical-term: {Gamma ⊢ _:A[phi |⟶ t]} cubical-path-1: cubical-path-1(Gamma;A;I;i;rho;phi;u) interval-1: 1(𝕀) nc-1: (i1) cube-set-restriction: f(s) nh-id: 1 cube+: cube+(I;i) functor-arrow: arrow(F) cubical-path-condition': cubical-path-condition'(Gamma;A;I;i;rho;phi;u;a1) names: names(I) bool: 𝔹 it: uiff: uiff(P;Q) sq_type: SQType(T) bnot: ¬bb assert: b bdd-distributive-lattice: BoundedDistributiveLattice rev_uimplies: rev_uimplies(P;Q) csm-ap-term: (t)s cubical-term: {X ⊢ _:A}
Lemmas referenced :  csm-ap-term-cube+ istype-cubical-term cubical-subset_wf add-name_wf cube-set-restriction_wf face-presheaf_wf2 nc-s_wf f-subset-add-name csm-ap-type_wf csm-comp_wf formal-cube_wf1 subset-iota_wf context-map_wf I_cube_wf nat_properties decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf istype-int int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf istype-le istype-nat fset-member_wf nat_wf int-deq_wf strong-subtype-deq-subtype strong-subtype-set3 le_wf strong-subtype-self istype-void fset_wf cubical-type_wf cubical_set_wf equal_wf squash_wf true_wf istype-universe context-subset-is-cubical-subset canonical-section_wf face-type_wf subtype_rel_self iff_weakening_equal fl-morph-id face-type-ap-morph cubical_set_cumulativity-i-j nc-0_wf csm-ap-comp-type cube-context-adjoin_wf interval-type_wf csm-id-adjoin_wf-interval-0 cube+_wf cube_set_map_wf csm-comp-assoc context-map-comp2 cube+_interval-0 nc-1_wf csm-id-adjoin_wf-interval-1 cube+_interval-1 context-subset-map trivial-cube-set_wf it_wf context-subset_wf cubical-term_wf csm-canonical-section-face-type-0 cubical-subset-is-context-subset-canonical cubical-term-eqcd cubical-type-subtype-cubical-subset csm-ap-term_wf equal_functionality_wrt_subtype_rel2 cubical-type-cumulativity2 constrained-cubical-term_wf csm-id-adjoin_wf interval-1_wf cubical-type-at_wf_face-type subset-cubical-term2 sub_cubical_set_self csm-face-type csm-context-subset-subtype3 cubical-type-at_wf cubical_type_at_pair_lemma dM1-sq-singleton-empty cubical-term-at_wf nh-id_wf cubical-type-cumulativity csm-subtype-cubical-subset csm-canonical-section-face-type-1 cubical-subset-I_cube csm-ap-term-at csm-ap-type-at csm-ap-csm-comp I_cube_pair_redex_lemma csm-ap_wf name-morph-satisfies_wf arrow_pair_lemma nh-comp-sq names_wf eq_int_wf eqtt_to_assert assert_of_eq_int eqff_to_assert bool_cases_sqequal subtype_base_sq bool_wf bool_subtype_base assert-bnot neg_assert_of_eq_int dM-lift-1 not-added-name dM-lift-inc name-morph-satisfies-comp lattice-point_wf face_lattice_wf subtype_rel_set bounded-lattice-structure_wf lattice-structure_wf lattice-axioms_wf bounded-lattice-structure-subtype bounded-lattice-axioms_wf lattice-meet_wf lattice-join_wf nh-comp_wf nh-id-right names-hom_wf nh-comp-assoc s-comp-nc-1 cubical-term-equal subset-cubical-type context-subset-is-subset subtype_rel_wf cubical-subset-I_cube-member context-map_wf_cubical-subset csm-ap-context-map cube-set-restriction-comp cube_set_restriction_pair_lemma csm-cubical-type-ap-morph cubical-type-ap-morph_wf istype-cubical-type-at subtype_rel-equal cube-set-restriction-id cubical-path-condition'_wf
Rules used in proof :  cut introduction extract_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt hypothesis sqequalHypSubstitution isectElimination thin hypothesisEquality lambdaFormation_alt setElimination rename because_Cache independent_isectElimination dependent_functionElimination universeIsType dependent_set_memberEquality_alt natural_numberEquality unionElimination approximateComputation independent_functionElimination dependent_pairFormation_alt lambdaEquality_alt int_eqEquality Error :memTop,  sqequalRule independent_pairFormation voidElimination setIsType functionIsType applyEquality intEquality instantiate imageElimination equalityTransitivity equalitySymmetry universeEquality imageMemberEquality baseClosed productElimination inhabitedIsType hyp_replacement cumulativity equalityIstype functionExtensionality equalityElimination promote_hyp productEquality isectEquality applyLambdaEquality

Latex:
\mforall{}[Gamma:j\mvdash{}].  \mforall{}[A:\{Gamma  \mvdash{}  \_\}].  \mforall{}[I:fset(\mBbbN{})].  \mforall{}[i:\{i:\mBbbN{}|  \mneg{}i  \mmember{}  I\}  ].  \mforall{}[rho:Gamma(I+i)].
    \mforall{}phi:\mBbbF{}(I)
        \mforall{}[u:\{I+i,s(phi)  \mvdash{}  \_:(A)<rho>  o  iota\}].
        \mforall{}[v:\{formal-cube(I)  \mvdash{}  \_:((A)<rho>  o  cube+(I;i))[1(\mBbbI{})][canonical-section(();\mBbbF{};I;\mcdot{};phi) 
                                                        |{}\mrightarrow{}  ((u)cube+(I;i))[1(\mBbbI{})]]\}].
            (v(1)  \mmember{}  cubical-path-1(Gamma;A;I;i;rho;phi;u))



Date html generated: 2020_05_20-PM-04_29_18
Last ObjectModification: 2020_04_20-AM-10_59_18

Theory : cubical!type!theory


Home Index