Nuprl Lemma : s-comp-nc-1

[I:fset(ℕ)]. ∀[i:ℕ].  s ⋅ (i1) 1 ∈ I ⟶ supposing ¬i ∈ I


Proof




Definitions occuring in Statement :  nc-1: (i1) nc-s: s add-name: I+i nh-comp: g ⋅ f nh-id: 1 names-hom: I ⟶ J fset-member: a ∈ s fset: fset(T) int-deq: IntDeq nat: uimplies: supposing a uall: [x:A]. B[x] not: ¬A equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a prop: subtype_rel: A ⊆B nat: so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  fset_wf strong-subtype-self le_wf strong-subtype-set3 strong-subtype-deq-subtype int-deq_wf nat_wf fset-member_wf not_wf dM1_wf s-comp-nc-p nc-1-as-nc-p
Rules used in proof :  cut lemma_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation hypothesis sqequalHypSubstitution isectElimination thin hypothesisEquality sqequalRule because_Cache independent_isectElimination applyEquality intEquality lambdaEquality natural_numberEquality

Latex:
\mforall{}[I:fset(\mBbbN{})].  \mforall{}[i:\mBbbN{}].    s  \mcdot{}  (i1)  =  1  supposing  \mneg{}i  \mmember{}  I



Date html generated: 2016_05_18-PM-00_01_22
Last ObjectModification: 2016_02_05-PM-00_51_54

Theory : cubical!type!theory


Home Index