Nuprl Lemma : s-comp-nc-p

[I:fset(ℕ)]. ∀[i:ℕ]. ∀[z:Point(dM(I))].  s ⋅ (i/z) 1 ∈ I ⟶ supposing ¬i ∈ I


Proof




Definitions occuring in Statement :  nc-p: (i/z) nc-s: s add-name: I+i nh-comp: g ⋅ f nh-id: 1 names-hom: I ⟶ J dM: dM(I) lattice-point: Point(l) fset-member: a ∈ s fset: fset(T) int-deq: IntDeq nat: uimplies: supposing a uall: [x:A]. B[x] not: ¬A equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a nh-id: 1 nc-s: s nc-p: (i/z) nh-comp: g ⋅ f names-hom: I ⟶ J dma-lift-compose: dma-lift-compose(I;J;eqi;eqj;f;g) compose: g dM: dM(I) dM-lift: dM-lift(I;J;f) squash: T subtype_rel: A ⊆B all: x:A. B[x] true: True prop: guard: {T} iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q implies:  Q nat: so_lambda: λ2x.t[x] so_apply: x[s] DeMorgan-algebra: DeMorganAlgebra names: names(I) bool: 𝔹 unit: Unit it: btrue: tt ifthenelse: if then else fi  bfalse: ff uiff: uiff(P;Q) exists: x:A. B[x] or: P ∨ Q sq_type: SQType(T) bnot: ¬bb assert: b false: False not: ¬A sq_stable: SqStable(P)
Lemmas referenced :  equal_wf dM-lift-inc add-name_wf names-subtype f-subset-add-name dM_inc_wf iff_weakening_equal names_wf not_wf fset-member_wf nat_wf int-deq_wf strong-subtype-deq-subtype strong-subtype-set3 le_wf strong-subtype-self lattice-point_wf dM_wf subtype_rel_set DeMorgan-algebra-structure_wf lattice-structure_wf lattice-axioms_wf bounded-lattice-structure-subtype DeMorgan-algebra-structure-subtype subtype_rel_transitivity bounded-lattice-structure_wf bounded-lattice-axioms_wf uall_wf lattice-meet_wf lattice-join_wf DeMorgan-algebra-axioms_wf eq_int_wf bool_wf eqff_to_assert bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot neg_assert_of_eq_int not-added-name eqtt_to_assert assert_of_eq_int int_subtype_base sq_stable__fset-member
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut functionExtensionality sqequalRule applyEquality thin lambdaEquality sqequalHypSubstitution imageElimination extract_by_obid isectElimination because_Cache hypothesis hypothesisEquality equalityTransitivity equalitySymmetry independent_isectElimination dependent_functionElimination natural_numberEquality imageMemberEquality baseClosed universeEquality productElimination independent_functionElimination intEquality isect_memberEquality axiomEquality instantiate productEquality cumulativity setElimination rename lambdaFormation unionElimination equalityElimination dependent_pairFormation promote_hyp voidElimination

Latex:
\mforall{}[I:fset(\mBbbN{})].  \mforall{}[i:\mBbbN{}].  \mforall{}[z:Point(dM(I))].    s  \mcdot{}  (i/z)  =  1  supposing  \mneg{}i  \mmember{}  I



Date html generated: 2017_10_05-AM-01_02_12
Last ObjectModification: 2017_07_28-AM-09_26_09

Theory : cubical!type!theory


Home Index