Nuprl Lemma : cubical-type-subtype-cubical-subset

[I:fset(ℕ)]. ∀[psi:𝔽(I)].  ({formal-cube(I) ⊢ _} ⊆{I,psi ⊢ _})


Proof




Definitions occuring in Statement :  cubical-type: {X ⊢ _} cubical-subset: I,psi face-presheaf: 𝔽 formal-cube: formal-cube(I) I_cube: A(I) fset: fset(T) nat: subtype_rel: A ⊆B uall: [x:A]. B[x]
Definitions unfolded in proof :  uall: [x:A]. B[x] subtype_rel: A ⊆B member: t ∈ T cubical-type: {X ⊢ _} and: P ∧ Q formal-cube: formal-cube(I) all: x:A. B[x] top: Top squash: T prop: true: True uimplies: supposing a guard: {T} iff: ⇐⇒ Q rev_implies:  Q implies:  Q so_lambda: λ2x.t[x] I_cube: A(I) functor-ob: ob(F) pi1: fst(t) face-presheaf: 𝔽 lattice-point: Point(l) record-select: r.x face_lattice: face_lattice(I) face-lattice: face-lattice(T;eq) free-dist-lattice-with-constraints: free-dist-lattice-with-constraints(T;eq;x.Cs[x]) constrained-antichain-lattice: constrained-antichain-lattice(T;eq;P) mk-bounded-distributive-lattice: mk-bounded-distributive-lattice mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o) record-update: r[x := v] ifthenelse: if then else fi  eq_atom: =a y bfalse: ff btrue: tt so_apply: x[s]
Lemmas referenced :  cubical-type_wf formal-cube_wf I_cube_wf face-presheaf_wf fset_wf nat_wf I_cube_pair_redex_lemma cube_set_restriction_pair_lemma cubical-subset-I_cube cubical-subset_wf names-hom_wf cube-set-restriction_wf cubical-subset-restriction equal_wf squash_wf true_wf iff_weakening_equal set_wf name-morph-satisfies_wf subtype_rel_self fset-all_wf fset-contains-none_wf face-lattice-constraints_wf all_wf nh-id_wf subtype_rel-equal cube-set-restriction-id nh-comp_wf cube-set-restriction-comp
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaEquality sqequalHypSubstitution setElimination thin rename cut productElimination dependent_set_memberEquality sqequalRule hypothesis introduction extract_by_obid isectElimination hypothesisEquality dependent_functionElimination isect_memberEquality voidElimination voidEquality dependent_pairEquality functionExtensionality applyEquality because_Cache functionEquality independent_pairFormation lambdaFormation imageElimination equalityTransitivity equalitySymmetry universeEquality natural_numberEquality imageMemberEquality baseClosed independent_isectElimination independent_functionElimination setEquality productEquality instantiate

Latex:
\mforall{}[I:fset(\mBbbN{})].  \mforall{}[psi:\mBbbF{}(I)].    (\{formal-cube(I)  \mvdash{}  \_\}  \msubseteq{}r  \{I,psi  \mvdash{}  \_\})



Date html generated: 2017_10_05-AM-06_42_13
Last ObjectModification: 2017_07_28-AM-10_32_53

Theory : cubical!type!theory


Home Index