Nuprl Lemma : cubical-subset-I_cube
∀[I,psi,J:Top].  (I,psi(J) ~ {f:J ⟶ I| (psi f) = 1} )
Proof
Definitions occuring in Statement : 
cubical-subset: I,psi
, 
name-morph-satisfies: (psi f) = 1
, 
I_cube: A(I)
, 
names-hom: I ⟶ J
, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
set: {x:A| B[x]} 
, 
sqequal: s ~ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
cubical-subset: I,psi
, 
I_cube: A(I)
, 
cube-cat: CubeCat
, 
rep-sub-sheaf: rep-sub-sheaf(C;X;P)
, 
functor-ob: ob(F)
, 
pi1: fst(t)
, 
all: ∀x:A. B[x]
, 
top: Top
Lemmas referenced : 
cat_arrow_triple_lemma, 
top_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
hypothesis, 
sqequalAxiom, 
isectElimination, 
hypothesisEquality, 
because_Cache
Latex:
\mforall{}[I,psi,J:Top].    (I,psi(J)  \msim{}  \{f:J  {}\mrightarrow{}  I|  (psi  f)  =  1\}  )
Date html generated:
2018_05_23-AM-08_40_56
Last ObjectModification:
2018_05_20-PM-05_51_05
Theory : cubical!type!theory
Home
Index