Nuprl Lemma : cube+_interval-0
∀[I:fset(ℕ)]. ∀[i:ℕ].  (cube+(I;i) o [0(𝕀)] = <(i0)> ∈ formal-cube(I) j⟶ formal-cube(I+i))
Proof
Definitions occuring in Statement : 
cube+: cube+(I;i)
, 
interval-0: 0(𝕀)
, 
interval-type: 𝕀
, 
csm-id-adjoin: [u]
, 
cube-context-adjoin: X.A
, 
csm-comp: G o F
, 
context-map: <rho>
, 
cube_set_map: A ⟶ B
, 
formal-cube: formal-cube(I)
, 
nc-0: (i0)
, 
add-name: I+i
, 
fset: fset(T)
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
all: ∀x:A. B[x]
, 
I_cube: A(I)
, 
functor-ob: ob(F)
, 
pi1: fst(t)
, 
formal-cube: formal-cube(I)
, 
names-hom: I ⟶ J
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
, 
context-map: <rho>
, 
cube+: cube+(I;i)
, 
interval-0: 0(𝕀)
, 
csm-id-adjoin: [u]
, 
csm-comp: G o F
, 
compose: f o g
, 
csm-adjoin: (s;u)
, 
csm-id: 1(X)
, 
csm-ap: (s)x
, 
nc-0: (i0)
, 
names: names(I)
, 
nat: ℕ
, 
implies: P 
⇒ Q
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
ifthenelse: if b then t else f fi 
, 
bfalse: ff
, 
exists: ∃x:A. B[x]
, 
or: P ∨ Q
, 
sq_type: SQType(T)
, 
guard: {T}
, 
bnot: ¬bb
, 
assert: ↑b
, 
false: False
Lemmas referenced : 
istype-nat, 
fset_wf, 
nat_wf, 
csm-equal, 
formal-cube_wf1, 
add-name_wf, 
csm-comp_wf, 
cube-context-adjoin_wf, 
interval-type_wf, 
csm-id-adjoin_wf, 
interval-0_wf, 
cube+_wf, 
context-map_wf, 
nc-0_wf, 
I_cube_wf, 
I_cube_pair_redex_lemma, 
arrow_pair_lemma, 
names_wf, 
nh-comp-sq, 
eq_int_wf, 
eqtt_to_assert, 
assert_of_eq_int, 
eqff_to_assert, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_wf, 
bool_subtype_base, 
assert-bnot, 
neg_assert_of_eq_int, 
dM0-sq-empty, 
dM-lift-0, 
subtype_rel_self, 
names-hom_wf, 
not-added-name, 
dM-lift-inc
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
hypothesis, 
extract_by_obid, 
sqequalRule, 
sqequalHypSubstitution, 
isect_memberEquality_alt, 
isectElimination, 
thin, 
hypothesisEquality, 
axiomEquality, 
isectIsTypeImplies, 
inhabitedIsType, 
universeIsType, 
instantiate, 
dependent_functionElimination, 
because_Cache, 
applyEquality, 
independent_isectElimination, 
functionExtensionality, 
Error :memTop, 
setElimination, 
rename, 
lambdaFormation_alt, 
unionElimination, 
equalityElimination, 
equalityTransitivity, 
equalitySymmetry, 
productElimination, 
dependent_pairFormation_alt, 
equalityIstype, 
promote_hyp, 
cumulativity, 
independent_functionElimination, 
voidElimination
Latex:
\mforall{}[I:fset(\mBbbN{})].  \mforall{}[i:\mBbbN{}].    (cube+(I;i)  o  [0(\mBbbI{})]  =  <(i0)>)
Date html generated:
2020_05_20-PM-02_39_13
Last ObjectModification:
2020_04_04-PM-02_52_32
Theory : cubical!type!theory
Home
Index