Nuprl Lemma : cubical-subset-is-context-subset-canonical
∀[I:fset(ℕ)]. ∀[psi:𝔽(I)].  (I,psi = formal-cube(I), canonical-section(();𝔽;I;⋅;psi) ∈ CubicalSet{j})
Proof
Definitions occuring in Statement : 
context-subset: Gamma, phi
, 
face-type: 𝔽
, 
canonical-section: canonical-section(Gamma;A;I;rho;a)
, 
cubical-subset: I,psi
, 
face-presheaf: 𝔽
, 
trivial-cube-set: ()
, 
formal-cube: formal-cube(I)
, 
I_cube: A(I)
, 
cubical_set: CubicalSet
, 
fset: fset(T)
, 
nat: ℕ
, 
it: ⋅
, 
uall: ∀[x:A]. B[x]
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
squash: ↓T
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
, 
unit: Unit
, 
I_cube: A(I)
, 
functor-ob: ob(F)
, 
pi1: fst(t)
, 
trivial-cube-set: ()
, 
face-presheaf: 𝔽
, 
lattice-point: Point(l)
, 
record-select: r.x
, 
face_lattice: face_lattice(I)
, 
face-lattice: face-lattice(T;eq)
, 
free-dist-lattice-with-constraints: free-dist-lattice-with-constraints(T;eq;x.Cs[x])
, 
constrained-antichain-lattice: constrained-antichain-lattice(T;eq;P)
, 
mk-bounded-distributive-lattice: mk-bounded-distributive-lattice, 
mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o)
, 
record-update: r[x := v]
, 
ifthenelse: if b then t else f fi 
, 
eq_atom: x =a y
, 
bfalse: ff
, 
btrue: tt
, 
cubical-type-at: A(a)
, 
face-type: 𝔽
, 
constant-cubical-type: (X)
, 
uimplies: b supposing a
, 
all: ∀x:A. B[x]
, 
formal-cube: formal-cube(I)
, 
names-hom: I ⟶ J
, 
true: True
, 
canonical-section: canonical-section(Gamma;A;I;rho;a)
Lemmas referenced : 
cubical-subset-is-context-subset, 
formal-cube_wf, 
context-subset_wf, 
squash_wf, 
true_wf, 
cubical-term_wf, 
face-type_wf, 
cubical_set_wf, 
cubical-term-equal, 
canonical-section_wf, 
trivial-cube-set_wf, 
it_wf, 
subtype_rel_self, 
I_cube_wf, 
cubical-type-at_wf_face-type, 
subset-cubical-term2, 
sub_cubical_set_self, 
csm-ap-type_wf, 
context-map_wf, 
csm-face-type, 
cube-set-restriction_wf, 
face-presheaf_wf2, 
names-hom_wf, 
fset_wf, 
nat_wf, 
I_cube_pair_redex_lemma, 
face-type-ap-morph, 
cube_set_restriction_pair_lemma
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
instantiate, 
because_Cache, 
applyEquality, 
lambdaEquality_alt, 
imageElimination, 
equalityTransitivity, 
equalitySymmetry, 
universeIsType, 
sqequalRule, 
Error :memTop, 
independent_isectElimination, 
dependent_functionElimination, 
inhabitedIsType, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
functionExtensionality, 
rename, 
hyp_replacement
Latex:
\mforall{}[I:fset(\mBbbN{})].  \mforall{}[psi:\mBbbF{}(I)].    (I,psi  =  formal-cube(I),  canonical-section(();\mBbbF{};I;\mcdot{};psi))
Date html generated:
2020_05_20-PM-02_45_57
Last ObjectModification:
2020_04_05-PM-02_50_38
Theory : cubical!type!theory
Home
Index