Nuprl Lemma : cubical-subset-is-context-subset-canonical

[I:fset(ℕ)]. ∀[psi:𝔽(I)].  (I,psi formal-cube(I), canonical-section(();𝔽;I;⋅;psi) ∈ CubicalSet{j})


Proof




Definitions occuring in Statement :  context-subset: Gamma, phi face-type: 𝔽 canonical-section: canonical-section(Gamma;A;I;rho;a) cubical-subset: I,psi face-presheaf: 𝔽 trivial-cube-set: () formal-cube: formal-cube(I) I_cube: A(I) cubical_set: CubicalSet fset: fset(T) nat: it: uall: [x:A]. B[x] equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T squash: T prop: subtype_rel: A ⊆B unit: Unit I_cube: A(I) functor-ob: ob(F) pi1: fst(t) trivial-cube-set: () face-presheaf: 𝔽 lattice-point: Point(l) record-select: r.x face_lattice: face_lattice(I) face-lattice: face-lattice(T;eq) free-dist-lattice-with-constraints: free-dist-lattice-with-constraints(T;eq;x.Cs[x]) constrained-antichain-lattice: constrained-antichain-lattice(T;eq;P) mk-bounded-distributive-lattice: mk-bounded-distributive-lattice mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o) record-update: r[x := v] ifthenelse: if then else fi  eq_atom: =a y bfalse: ff btrue: tt cubical-type-at: A(a) face-type: 𝔽 constant-cubical-type: (X) uimplies: supposing a all: x:A. B[x] formal-cube: formal-cube(I) names-hom: I ⟶ J true: True canonical-section: canonical-section(Gamma;A;I;rho;a)
Lemmas referenced :  cubical-subset-is-context-subset formal-cube_wf context-subset_wf squash_wf true_wf cubical-term_wf face-type_wf cubical_set_wf cubical-term-equal canonical-section_wf trivial-cube-set_wf it_wf subtype_rel_self I_cube_wf cubical-type-at_wf_face-type subset-cubical-term2 sub_cubical_set_self csm-ap-type_wf context-map_wf csm-face-type cube-set-restriction_wf face-presheaf_wf2 names-hom_wf fset_wf nat_wf I_cube_pair_redex_lemma face-type-ap-morph cube_set_restriction_pair_lemma
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis instantiate because_Cache applyEquality lambdaEquality_alt imageElimination equalityTransitivity equalitySymmetry universeIsType sqequalRule Error :memTop,  independent_isectElimination dependent_functionElimination inhabitedIsType natural_numberEquality imageMemberEquality baseClosed functionExtensionality rename hyp_replacement

Latex:
\mforall{}[I:fset(\mBbbN{})].  \mforall{}[psi:\mBbbF{}(I)].    (I,psi  =  formal-cube(I),  canonical-section(();\mBbbF{};I;\mcdot{};psi))



Date html generated: 2020_05_20-PM-02_45_57
Last ObjectModification: 2020_04_05-PM-02_50_38

Theory : cubical!type!theory


Home Index