Nuprl Lemma : cubical-subset-is-context-subset
∀[I:fset(ℕ)]. ∀[psi:𝔽(I)].  (I,psi = formal-cube(I), λJ,f. f(psi) ∈ CubicalSet{j})
Proof
Definitions occuring in Statement : 
context-subset: Gamma, phi
, 
cubical-subset: I,psi
, 
face-presheaf: 𝔽
, 
formal-cube: formal-cube(I)
, 
cube-set-restriction: f(s)
, 
I_cube: A(I)
, 
cubical_set: CubicalSet
, 
fset: fset(T)
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
lambda: λx.A[x]
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
cubical-term: {X ⊢ _:A}
, 
subtype_rel: A ⊆r B
, 
I_cube: A(I)
, 
functor-ob: ob(F)
, 
pi1: fst(t)
, 
formal-cube: formal-cube(I)
, 
names-hom: I ⟶ J
, 
face-presheaf: 𝔽
, 
lattice-point: Point(l)
, 
record-select: r.x
, 
face_lattice: face_lattice(I)
, 
face-lattice: face-lattice(T;eq)
, 
free-dist-lattice-with-constraints: free-dist-lattice-with-constraints(T;eq;x.Cs[x])
, 
constrained-antichain-lattice: constrained-antichain-lattice(T;eq;P)
, 
mk-bounded-distributive-lattice: mk-bounded-distributive-lattice, 
mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o)
, 
record-update: r[x := v]
, 
ifthenelse: if b then t else f fi 
, 
eq_atom: x =a y
, 
bfalse: ff
, 
btrue: tt
, 
cubical-type-at: A(a)
, 
face-type: 𝔽
, 
constant-cubical-type: (X)
, 
all: ∀x:A. B[x]
, 
cubical-type-ap-morph: (u a f)
, 
pi2: snd(t)
, 
context-subset: Gamma, phi
, 
cubical-subset: I,psi
, 
cube-cat: CubeCat
, 
rep-sub-sheaf: rep-sub-sheaf(C;X;P)
, 
cubical-term-at: u(a)
, 
name-morph-satisfies: (psi f) = 1
, 
squash: ↓T
, 
prop: ℙ
, 
guard: {T}
, 
fl-morph: <f>
, 
fl-lift: fl-lift(T;eq;L;eqL;f0;f1)
, 
face-lattice-property, 
free-dist-lattice-with-constraints-property, 
lattice-extend-wc: lattice-extend-wc(L;eq;eqL;f;ac)
, 
lattice-extend: lattice-extend(L;eq;eqL;f;ac)
, 
lattice-fset-join: \/(s)
, 
reduce: reduce(f;k;as)
, 
list_ind: list_ind, 
fset-image: f"(s)
, 
f-union: f-union(domeq;rngeq;s;x.g[x])
, 
list_accum: list_accum, 
cube-set-restriction: f(s)
, 
bdd-distributive-lattice: BoundedDistributiveLattice
, 
true: True
, 
so_lambda: λ2x.t[x]
, 
and: P ∧ Q
, 
so_apply: x[s]
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
implies: P 
⇒ Q
, 
bounded-lattice-hom: Hom(l1;l2)
, 
lattice-hom: Hom(l1;l2)
Lemmas referenced : 
formal-cube_wf, 
cubical_sets_equal, 
I_cube_wf, 
face-presheaf_wf2, 
fset_wf, 
nat_wf, 
cubical-subset_wf, 
context-subset_wf, 
cube-set-restriction_wf, 
subtype_rel_self, 
names-hom_wf, 
cubical-type-at_wf_face-type, 
cube_set_restriction_pair_lemma, 
cubical_type_at_pair_lemma, 
cube-set-restriction-comp, 
istype-cubical-type-at, 
face-type_wf, 
cubical-type-ap-morph_wf, 
cat_arrow_triple_lemma, 
cat_comp_tuple_lemma, 
I_cube_pair_redex_lemma, 
face_lattice-point_wf, 
equal_wf, 
squash_wf, 
true_wf, 
istype-universe, 
subtype_rel_universe1, 
lattice-1_wf, 
face_lattice_wf, 
name-morph-satisfies_wf, 
lattice-point_wf, 
subtype_rel_set, 
bounded-lattice-structure_wf, 
lattice-structure_wf, 
lattice-axioms_wf, 
bounded-lattice-structure-subtype, 
bounded-lattice-axioms_wf, 
lattice-meet_wf, 
lattice-join_wf, 
nh-comp_wf, 
fl-morph-comp2, 
iff_weakening_equal, 
fl-morph_wf, 
fl-morph-1, 
face-lattice-property, 
free-dist-lattice-with-constraints-property
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
cut, 
thin, 
instantiate, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
hypothesisEquality, 
hypothesis, 
independent_isectElimination, 
universeIsType, 
dependent_set_memberEquality_alt, 
lambdaEquality_alt, 
applyEquality, 
sqequalRule, 
Error :memTop, 
inhabitedIsType, 
lambdaFormation_alt, 
dependent_functionElimination, 
functionIsType, 
because_Cache, 
equalityIstype, 
equalityTransitivity, 
equalitySymmetry, 
dependent_pairEquality_alt, 
functionExtensionality, 
setEquality, 
imageElimination, 
universeEquality, 
setElimination, 
rename, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
productEquality, 
cumulativity, 
isectEquality, 
productElimination, 
independent_functionElimination
Latex:
\mforall{}[I:fset(\mBbbN{})].  \mforall{}[psi:\mBbbF{}(I)].    (I,psi  =  formal-cube(I),  \mlambda{}J,f.  f(psi))
Date html generated:
2020_05_20-PM-02_45_45
Last ObjectModification:
2020_04_05-PM-02_50_39
Theory : cubical!type!theory
Home
Index