Nuprl Lemma : cubical-subset-is-context-subset

[I:fset(ℕ)]. ∀[psi:𝔽(I)].  (I,psi formal-cube(I), λJ,f. f(psi) ∈ CubicalSet{j})


Proof




Definitions occuring in Statement :  context-subset: Gamma, phi cubical-subset: I,psi face-presheaf: 𝔽 formal-cube: formal-cube(I) cube-set-restriction: f(s) I_cube: A(I) cubical_set: CubicalSet fset: fset(T) nat: uall: [x:A]. B[x] lambda: λx.A[x] equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a cubical-term: {X ⊢ _:A} subtype_rel: A ⊆B I_cube: A(I) functor-ob: ob(F) pi1: fst(t) formal-cube: formal-cube(I) names-hom: I ⟶ J face-presheaf: 𝔽 lattice-point: Point(l) record-select: r.x face_lattice: face_lattice(I) face-lattice: face-lattice(T;eq) free-dist-lattice-with-constraints: free-dist-lattice-with-constraints(T;eq;x.Cs[x]) constrained-antichain-lattice: constrained-antichain-lattice(T;eq;P) mk-bounded-distributive-lattice: mk-bounded-distributive-lattice mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o) record-update: r[x := v] ifthenelse: if then else fi  eq_atom: =a y bfalse: ff btrue: tt cubical-type-at: A(a) face-type: 𝔽 constant-cubical-type: (X) all: x:A. B[x] cubical-type-ap-morph: (u f) pi2: snd(t) context-subset: Gamma, phi cubical-subset: I,psi cube-cat: CubeCat rep-sub-sheaf: rep-sub-sheaf(C;X;P) cubical-term-at: u(a) name-morph-satisfies: (psi f) 1 squash: T prop: guard: {T} fl-morph: <f> fl-lift: fl-lift(T;eq;L;eqL;f0;f1) face-lattice-property free-dist-lattice-with-constraints-property lattice-extend-wc: lattice-extend-wc(L;eq;eqL;f;ac) lattice-extend: lattice-extend(L;eq;eqL;f;ac) lattice-fset-join: \/(s) reduce: reduce(f;k;as) list_ind: list_ind fset-image: f"(s) f-union: f-union(domeq;rngeq;s;x.g[x]) list_accum: list_accum cube-set-restriction: f(s) bdd-distributive-lattice: BoundedDistributiveLattice true: True so_lambda: λ2x.t[x] and: P ∧ Q so_apply: x[s] iff: ⇐⇒ Q rev_implies:  Q implies:  Q bounded-lattice-hom: Hom(l1;l2) lattice-hom: Hom(l1;l2)
Lemmas referenced :  formal-cube_wf cubical_sets_equal I_cube_wf face-presheaf_wf2 fset_wf nat_wf cubical-subset_wf context-subset_wf cube-set-restriction_wf subtype_rel_self names-hom_wf cubical-type-at_wf_face-type cube_set_restriction_pair_lemma cubical_type_at_pair_lemma cube-set-restriction-comp istype-cubical-type-at face-type_wf cubical-type-ap-morph_wf cat_arrow_triple_lemma cat_comp_tuple_lemma I_cube_pair_redex_lemma face_lattice-point_wf equal_wf squash_wf true_wf istype-universe subtype_rel_universe1 lattice-1_wf face_lattice_wf name-morph-satisfies_wf lattice-point_wf subtype_rel_set bounded-lattice-structure_wf lattice-structure_wf lattice-axioms_wf bounded-lattice-structure-subtype bounded-lattice-axioms_wf lattice-meet_wf lattice-join_wf nh-comp_wf fl-morph-comp2 iff_weakening_equal fl-morph_wf fl-morph-1 face-lattice-property free-dist-lattice-with-constraints-property
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt cut thin instantiate introduction extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality hypothesis independent_isectElimination universeIsType dependent_set_memberEquality_alt lambdaEquality_alt applyEquality sqequalRule Error :memTop,  inhabitedIsType lambdaFormation_alt dependent_functionElimination functionIsType because_Cache equalityIstype equalityTransitivity equalitySymmetry dependent_pairEquality_alt functionExtensionality setEquality imageElimination universeEquality setElimination rename natural_numberEquality imageMemberEquality baseClosed productEquality cumulativity isectEquality productElimination independent_functionElimination

Latex:
\mforall{}[I:fset(\mBbbN{})].  \mforall{}[psi:\mBbbF{}(I)].    (I,psi  =  formal-cube(I),  \mlambda{}J,f.  f(psi))



Date html generated: 2020_05_20-PM-02_45_45
Last ObjectModification: 2020_04_05-PM-02_50_39

Theory : cubical!type!theory


Home Index