Nuprl Lemma : csm-comp-assoc
∀[A,B,C,D:j⊢]. ∀[F:A j⟶ B]. ∀[G:B j⟶ C]. ∀[H:C j⟶ D].  (H o G o F = H o G o F ∈ A j⟶ D)
Proof
Definitions occuring in Statement : 
csm-comp: G o F
, 
cube_set_map: A ⟶ B
, 
cubical_set: CubicalSet
, 
uall: ∀[x:A]. B[x]
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
cubical_set: CubicalSet
, 
cube_set_map: A ⟶ B
, 
csm-comp: G o F
, 
pscm-comp: G o F
Lemmas referenced : 
pscm-comp-assoc, 
cube-cat_wf
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isectElimination, 
thin, 
hypothesis, 
sqequalRule
Latex:
\mforall{}[A,B,C,D:j\mvdash{}].  \mforall{}[F:A  j{}\mrightarrow{}  B].  \mforall{}[G:B  j{}\mrightarrow{}  C].  \mforall{}[H:C  j{}\mrightarrow{}  D].    (H  o  G  o  F  =  H  o  G  o  F)
Date html generated:
2020_05_20-PM-01_41_44
Last ObjectModification:
2020_04_03-PM-03_33_53
Theory : cubical!type!theory
Home
Index