Nuprl Lemma : csm-comp-assoc

[A,B,C,D:j⊢]. ∀[F:A j⟶ B]. ∀[G:B j⟶ C]. ∀[H:C j⟶ D].  (H F ∈ j⟶ D)


Proof




Definitions occuring in Statement :  csm-comp: F cube_set_map: A ⟶ B cubical_set: CubicalSet uall: [x:A]. B[x] equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T cubical_set: CubicalSet cube_set_map: A ⟶ B csm-comp: F pscm-comp: F
Lemmas referenced :  pscm-comp-assoc cube-cat_wf
Rules used in proof :  cut introduction extract_by_obid sqequalHypSubstitution sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isectElimination thin hypothesis sqequalRule

Latex:
\mforall{}[A,B,C,D:j\mvdash{}].  \mforall{}[F:A  j{}\mrightarrow{}  B].  \mforall{}[G:B  j{}\mrightarrow{}  C].  \mforall{}[H:C  j{}\mrightarrow{}  D].    (H  o  G  o  F  =  H  o  G  o  F)



Date html generated: 2020_05_20-PM-01_41_44
Last ObjectModification: 2020_04_03-PM-03_33_53

Theory : cubical!type!theory


Home Index