Nuprl Lemma : pscm-comp-assoc

[C:SmallCategory]. ∀[A,B,E,D:ps_context{j:l}(C)]. ∀[F:psc_map{j:l}(C; A; B)]. ∀[G:psc_map{j:l}(C; B; E)].
[H:psc_map{j:l}(C; E; D)].
  (H F ∈ psc_map{j:l}(C; A; D))


Proof




Definitions occuring in Statement :  pscm-comp: F psc_map: A ⟶ B ps_context: __⊢ uall: [x:A]. B[x] equal: t ∈ T small-category: SmallCategory
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T subtype_rel: A ⊆B psc_map: A ⟶ B ps_context: __⊢ all: x:A. B[x]
Lemmas referenced :  pscm-comp-sq psc_map_wf small-category_wf trans-comp-assoc op-cat_wf type-cat_wf small-category-cumulativity-2
Rules used in proof :  cut introduction extract_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt hypothesis sqequalHypSubstitution isectElimination thin hypothesisEquality universeIsType instantiate applyEquality because_Cache sqequalRule isect_memberEquality_alt axiomEquality isectIsTypeImplies inhabitedIsType Error :memTop,  dependent_functionElimination

Latex:
\mforall{}[C:SmallCategory].  \mforall{}[A,B,E,D:ps\_context\{j:l\}(C)].  \mforall{}[F:psc\_map\{j:l\}(C;  A;  B)].  \mforall{}[G:psc\_map\{j:l\}(C;
                                                                                                                                                                                                B;
                                                                                                                                                                                                E)].
\mforall{}[H:psc\_map\{j:l\}(C;  E;  D)].
    (H  o  G  o  F  =  H  o  G  o  F)



Date html generated: 2020_05_20-PM-01_24_09
Last ObjectModification: 2020_04_01-AM-10_53_33

Theory : presheaf!models!of!type!theory


Home Index