Nuprl Lemma : pscm-comp-sq
∀[C:SmallCategory]. ∀[A,B,E,F,G:Top].  (G o F ~ F o G)
Proof
Definitions occuring in Statement : 
pscm-comp: G o F
, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
sqequal: s ~ t
, 
type-cat: TypeCat
, 
op-cat: op-cat(C)
, 
trans-comp: t1 o t2
, 
small-category: SmallCategory
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
type-cat: TypeCat
, 
trans-comp: t1 o t2
, 
pscm-comp: G o F
, 
all: ∀x:A. B[x]
, 
mk-nat-trans: x |→ T[x]
Lemmas referenced : 
cat_comp_tuple_lemma, 
istype-top, 
small-category_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
sqequalRule, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
Error :memTop, 
hypothesis, 
axiomSqEquality, 
inhabitedIsType, 
hypothesisEquality, 
isect_memberEquality_alt, 
isectElimination, 
isectIsTypeImplies, 
universeIsType
Latex:
\mforall{}[C:SmallCategory].  \mforall{}[A,B,E,F,G:Top].    (G  o  F  \msim{}  F  o  G)
Date html generated:
2020_05_20-PM-01_24_05
Last ObjectModification:
2020_04_01-AM-09_40_19
Theory : presheaf!models!of!type!theory
Home
Index