Nuprl Lemma : pscm-comp-sq

[C:SmallCategory]. ∀[A,B,E,F,G:Top].  (G G)


Proof




Definitions occuring in Statement :  pscm-comp: F uall: [x:A]. B[x] top: Top sqequal: t type-cat: TypeCat op-cat: op-cat(C) trans-comp: t1 t2 small-category: SmallCategory
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T type-cat: TypeCat trans-comp: t1 t2 pscm-comp: F all: x:A. B[x] mk-nat-trans: |→ T[x]
Lemmas referenced :  cat_comp_tuple_lemma istype-top small-category_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut sqequalRule extract_by_obid sqequalHypSubstitution dependent_functionElimination thin Error :memTop,  hypothesis axiomSqEquality inhabitedIsType hypothesisEquality isect_memberEquality_alt isectElimination isectIsTypeImplies universeIsType

Latex:
\mforall{}[C:SmallCategory].  \mforall{}[A,B,E,F,G:Top].    (G  o  F  \msim{}  F  o  G)



Date html generated: 2020_05_20-PM-01_24_05
Last ObjectModification: 2020_04_01-AM-09_40_19

Theory : presheaf!models!of!type!theory


Home Index