Nuprl Lemma : csm-subtype-cubical-subset

[Gamma:j⊢]. ∀[I:fset(ℕ)]. ∀[psi:𝔽(I)].  (formal-cube(I) j⟶ Gamma ⊆I,psi j⟶ Gamma)


Proof




Definitions occuring in Statement :  cubical-subset: I,psi face-presheaf: 𝔽 cube_set_map: A ⟶ B formal-cube: formal-cube(I) I_cube: A(I) cubical_set: CubicalSet fset: fset(T) nat: subtype_rel: A ⊆B uall: [x:A]. B[x]
Definitions unfolded in proof :  uall: [x:A]. B[x] subtype_rel: A ⊆B member: t ∈ T cube_set_map: A ⟶ B psc_map: A ⟶ B nat-trans: nat-trans(C;D;F;G) formal-cube: formal-cube(I) type-cat: TypeCat cube-cat: CubeCat all: x:A. B[x] cubical-subset: I,psi rep-sub-sheaf: rep-sub-sheaf(C;X;P) compose: g functor-arrow: arrow(F) functor-ob: ob(F) op-cat: op-cat(C) cat-arrow: cat-arrow(C) cat-ob: cat-ob(C) spreadn: spread4 pi1: fst(t) pi2: snd(t) I_cube: A(I) so_lambda: λ2x.t[x] so_apply: x[s] face-presheaf: 𝔽 lattice-point: Point(l) record-select: r.x face_lattice: face_lattice(I) face-lattice: face-lattice(T;eq) free-dist-lattice-with-constraints: free-dist-lattice-with-constraints(T;eq;x.Cs[x]) constrained-antichain-lattice: constrained-antichain-lattice(T;eq;P) mk-bounded-distributive-lattice: mk-bounded-distributive-lattice mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o) record-update: r[x := v] ifthenelse: if then else fi  eq_atom: =a y bfalse: ff btrue: tt bdd-distributive-lattice: BoundedDistributiveLattice prop: and: P ∧ Q uimplies: supposing a istype: istype(T) cubical_set: CubicalSet ps_context: __⊢ cat-functor: Functor(C1;C2)
Lemmas referenced :  cat_arrow_triple_lemma ob_pair_lemma cat_comp_tuple_lemma arrow_pair_lemma subtype_rel_dep_function names-hom_wf I_cube_wf name-morph-satisfies_wf subtype_rel_self lattice-point_wf face_lattice_wf subtype_rel_set bounded-lattice-structure_wf lattice-structure_wf lattice-axioms_wf bounded-lattice-structure-subtype bounded-lattice-axioms_wf equal_wf lattice-meet_wf lattice-join_wf fset_wf nat_wf cat-ob_wf op-cat_wf cube-cat_wf cat-arrow_wf type-cat_wf functor-ob_wf cubical-subset_wf cat-comp_wf small-category-cumulativity-2 cat-functor_wf functor-arrow_wf cube_set_map_wf formal-cube_wf1 face-presheaf_wf2 cubical_set_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt lambdaEquality_alt sqequalHypSubstitution setElimination thin rename cut dependent_set_memberEquality_alt sqequalRule introduction extract_by_obid dependent_functionElimination Error :memTop,  hypothesis functionExtensionality applyEquality hypothesisEquality instantiate isectElimination cumulativity universeIsType setEquality productEquality isectEquality because_Cache independent_isectElimination setIsType lambdaFormation_alt functionIsType equalityIstype applyLambdaEquality

Latex:
\mforall{}[Gamma:j\mvdash{}].  \mforall{}[I:fset(\mBbbN{})].  \mforall{}[psi:\mBbbF{}(I)].    (formal-cube(I)  j{}\mrightarrow{}  Gamma  \msubseteq{}r  I,psi  j{}\mrightarrow{}  Gamma)



Date html generated: 2020_05_20-PM-04_20_08
Last ObjectModification: 2020_04_21-AM-00_50_09

Theory : cubical!type!theory


Home Index