Nuprl Lemma : nc-e'-lemma3

[I:fset(ℕ)]. ∀[i:{i:ℕ| ¬i ∈ I} ]. ∀[J:fset(ℕ)]. ∀[g:J ⟶ I]. ∀[j:{j:ℕ| ¬j ∈ J} ].  (s ⋅ g,i=j g ⋅ s ∈ J+j ⟶ I)


Proof




Definitions occuring in Statement :  nc-e': g,i=j nc-s: s add-name: I+i nh-comp: g ⋅ f names-hom: I ⟶ J fset-member: a ∈ s fset: fset(T) int-deq: IntDeq nat: uall: [x:A]. B[x] not: ¬A set: {x:A| B[x]}  equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T names-hom: I ⟶ J prop: so_lambda: λ2x.t[x] subtype_rel: A ⊆B uimplies: supposing a nat: so_apply: x[s] nc-s: s nh-comp: g ⋅ f nc-e': g,i=j dma-lift-compose: dma-lift-compose(I;J;eqi;eqj;f;g) compose: g dM: dM(I) dM-lift: dM-lift(I;J;f) squash: T DeMorgan-algebra: DeMorganAlgebra and: P ∧ Q guard: {T} names: names(I) all: x:A. B[x] implies:  Q bool: 𝔹 unit: Unit it: btrue: tt ifthenelse: if then else fi  uiff: uiff(P;Q) bfalse: ff exists: x:A. B[x] or: P ∨ Q sq_type: SQType(T) bnot: ¬bb assert: b false: False dma-hom: dma-hom(dma1;dma2) bounded-lattice-hom: Hom(l1;l2) lattice-hom: Hom(l1;l2) true: True iff: ⇐⇒ Q rev_implies:  Q not: ¬A sq_stable: SqStable(P) dM_inc: <x> dminc: <i> free-dl-inc: free-dl-inc(x) fset-singleton: {x} cons: [a b]
Lemmas referenced :  names_wf set_wf nat_wf not_wf fset-member_wf int-deq_wf strong-subtype-deq-subtype strong-subtype-set3 le_wf strong-subtype-self names-hom_wf equal_wf squash_wf true_wf lattice-point_wf dM_wf add-name_wf subtype_rel_set DeMorgan-algebra-structure_wf lattice-structure_wf lattice-axioms_wf bounded-lattice-structure-subtype DeMorgan-algebra-structure-subtype subtype_rel_transitivity bounded-lattice-structure_wf bounded-lattice-axioms_wf uall_wf lattice-meet_wf lattice-join_wf DeMorgan-algebra-axioms_wf dM-lift-inc eq_int_wf bool_wf eqtt_to_assert assert_of_eq_int dM_inc_wf trivial-member-add-name1 eqff_to_assert bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot neg_assert_of_eq_int not-added-name dM-point-subtype f-subset-add-name names-subtype dM-lift_wf dma-hom_wf all_wf iff_weakening_equal int_subtype_base sq_stable__fset-member dM-lift-unique-fun dM-subobject
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut setElimination thin rename functionExtensionality extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality hypothesis sqequalRule lambdaEquality applyEquality intEquality independent_isectElimination because_Cache natural_numberEquality isect_memberEquality axiomEquality imageElimination equalityTransitivity equalitySymmetry universeEquality instantiate productEquality cumulativity lambdaFormation unionElimination equalityElimination productElimination dependent_functionElimination dependent_set_memberEquality dependent_pairFormation promote_hyp independent_functionElimination voidElimination setEquality imageMemberEquality baseClosed hyp_replacement applyLambdaEquality

Latex:
\mforall{}[I:fset(\mBbbN{})].  \mforall{}[i:\{i:\mBbbN{}|  \mneg{}i  \mmember{}  I\}  ].  \mforall{}[J:fset(\mBbbN{})].  \mforall{}[g:J  {}\mrightarrow{}  I].  \mforall{}[j:\{j:\mBbbN{}|  \mneg{}j  \mmember{}  J\}  ].
    (s  \mcdot{}  g,i=j  =  g  \mcdot{}  s)



Date html generated: 2017_10_05-AM-01_04_25
Last ObjectModification: 2017_07_28-AM-09_26_59

Theory : cubical!type!theory


Home Index