Nuprl Lemma : dM-subobject
∀[I,J:fset(ℕ)].  λv.v ∈ dma-hom(dM(I);dM(J)) supposing I ⊆ J
Proof
Definitions occuring in Statement : 
dM: dM(I)
, 
dma-hom: dma-hom(dma1;dma2)
, 
f-subset: xs ⊆ ys
, 
fset: fset(T)
, 
int-deq: IntDeq
, 
nat: ℕ
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
lambda: λx.A[x]
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
dma-hom: dma-hom(dma1;dma2)
, 
subtype_rel: A ⊆r B
, 
DeMorgan-algebra: DeMorganAlgebra
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
guard: {T}
, 
bounded-lattice-hom: Hom(l1;l2)
, 
lattice-hom: Hom(l1;l2)
, 
prop: ℙ
, 
nat: ℕ
, 
and: P ∧ Q
, 
cand: A c∧ B
, 
dM: dM(I)
, 
lattice-meet: a ∧ b
, 
free-DeMorgan-algebra: free-DeMorgan-algebra(T;eq)
, 
free-DeMorgan-lattice: free-DeMorgan-lattice(T;eq)
, 
mk-DeMorgan-algebra: mk-DeMorgan-algebra(L;n)
, 
all: ∀x:A. B[x]
, 
top: Top
, 
eq_atom: x =a y
, 
ifthenelse: if b then t else f fi 
, 
bfalse: ff
, 
free-dist-lattice: free-dist-lattice(T; eq)
, 
mk-bounded-distributive-lattice: mk-bounded-distributive-lattice, 
mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o)
, 
btrue: tt
, 
union-deq: union-deq(A;B;a;b)
, 
lattice-join: a ∨ b
, 
lattice-0: 0
, 
record-select: r.x
, 
record-update: r[x := v]
, 
empty-fset: {}
, 
nil: []
, 
it: ⋅
, 
lattice-1: 1
, 
fset-singleton: {x}
, 
cons: [a / b]
, 
dma-neg: ¬(x)
, 
dm-neg: ¬(x)
, 
lattice-extend: lattice-extend(L;eq;eqL;f;ac)
, 
lattice-fset-meet: /\(s)
, 
lattice-fset-join: \/(s)
, 
opposite-lattice: opposite-lattice(L)
, 
so_lambda: λ2x y.t[x; y]
Lemmas referenced : 
lattice-point_wf, 
dM_wf, 
subtype_rel_set, 
lattice-structure_wf, 
bounded-lattice-structure-subtype, 
DeMorgan-algebra-structure-subtype, 
subtype_rel_transitivity, 
uall_wf, 
equal_wf, 
dma-neg_wf, 
DeMorgan-algebra_wf, 
f-subset_wf, 
nat_wf, 
int-deq_wf, 
strong-subtype-deq-subtype, 
strong-subtype-set3, 
le_wf, 
strong-subtype-self, 
fset_wf, 
dM-point-subtype, 
rec_select_update_lemma, 
lattice-meet_wf, 
lattice-join_wf, 
lattice-0_wf, 
DeMorgan-algebra-structure_wf, 
bounded-lattice-structure_wf, 
lattice-axioms_wf, 
bounded-lattice-axioms_wf, 
DeMorgan-algebra-axioms_wf, 
lattice-1_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
dependent_set_memberEquality, 
sqequalRule, 
hypothesis, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
applyEquality, 
instantiate, 
because_Cache, 
independent_isectElimination, 
lambdaEquality, 
setElimination, 
rename, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
intEquality, 
natural_numberEquality, 
isect_memberEquality, 
dependent_functionElimination, 
voidElimination, 
voidEquality, 
independent_pairFormation, 
productElimination, 
independent_pairEquality, 
productEquality, 
functionExtensionality, 
cumulativity, 
universeEquality
Latex:
\mforall{}[I,J:fset(\mBbbN{})].    \mlambda{}v.v  \mmember{}  dma-hom(dM(I);dM(J))  supposing  I  \msubseteq{}  J
Date html generated:
2017_10_05-AM-01_00_48
Last ObjectModification:
2017_07_28-AM-09_25_53
Theory : cubical!type!theory
Home
Index