Nuprl Lemma : dM-subobject

[I,J:fset(ℕ)].  λv.v ∈ dma-hom(dM(I);dM(J)) supposing I ⊆ J


Proof




Definitions occuring in Statement :  dM: dM(I) dma-hom: dma-hom(dma1;dma2) f-subset: xs ⊆ ys fset: fset(T) int-deq: IntDeq nat: uimplies: supposing a uall: [x:A]. B[x] member: t ∈ T lambda: λx.A[x]
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a dma-hom: dma-hom(dma1;dma2) subtype_rel: A ⊆B DeMorgan-algebra: DeMorganAlgebra so_lambda: λ2x.t[x] so_apply: x[s] guard: {T} bounded-lattice-hom: Hom(l1;l2) lattice-hom: Hom(l1;l2) prop: nat: and: P ∧ Q cand: c∧ B dM: dM(I) lattice-meet: a ∧ b free-DeMorgan-algebra: free-DeMorgan-algebra(T;eq) free-DeMorgan-lattice: free-DeMorgan-lattice(T;eq) mk-DeMorgan-algebra: mk-DeMorgan-algebra(L;n) all: x:A. B[x] top: Top eq_atom: =a y ifthenelse: if then else fi  bfalse: ff free-dist-lattice: free-dist-lattice(T; eq) mk-bounded-distributive-lattice: mk-bounded-distributive-lattice mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o) btrue: tt union-deq: union-deq(A;B;a;b) lattice-join: a ∨ b lattice-0: 0 record-select: r.x record-update: r[x := v] empty-fset: {} nil: [] it: lattice-1: 1 fset-singleton: {x} cons: [a b] dma-neg: ¬(x) dm-neg: ¬(x) lattice-extend: lattice-extend(L;eq;eqL;f;ac) lattice-fset-meet: /\(s) lattice-fset-join: \/(s) opposite-lattice: opposite-lattice(L) so_lambda: λ2y.t[x; y]
Lemmas referenced :  lattice-point_wf dM_wf subtype_rel_set lattice-structure_wf bounded-lattice-structure-subtype DeMorgan-algebra-structure-subtype subtype_rel_transitivity uall_wf equal_wf dma-neg_wf DeMorgan-algebra_wf f-subset_wf nat_wf int-deq_wf strong-subtype-deq-subtype strong-subtype-set3 le_wf strong-subtype-self fset_wf dM-point-subtype rec_select_update_lemma lattice-meet_wf lattice-join_wf lattice-0_wf DeMorgan-algebra-structure_wf bounded-lattice-structure_wf lattice-axioms_wf bounded-lattice-axioms_wf DeMorgan-algebra-axioms_wf lattice-1_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut dependent_set_memberEquality sqequalRule hypothesis extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality applyEquality instantiate because_Cache independent_isectElimination lambdaEquality setElimination rename axiomEquality equalityTransitivity equalitySymmetry intEquality natural_numberEquality isect_memberEquality dependent_functionElimination voidElimination voidEquality independent_pairFormation productElimination independent_pairEquality productEquality functionExtensionality cumulativity universeEquality

Latex:
\mforall{}[I,J:fset(\mBbbN{})].    \mlambda{}v.v  \mmember{}  dma-hom(dM(I);dM(J))  supposing  I  \msubseteq{}  J



Date html generated: 2017_10_05-AM-01_00_48
Last ObjectModification: 2017_07_28-AM-09_25_53

Theory : cubical!type!theory


Home Index