Nuprl Lemma : dM-lift-unique-fun
∀[I,J:fset(ℕ)]. ∀[f:I ⟶ J]. ∀[g:dma-hom(dM(J);dM(I))].
  dM-lift(I;J;f) = g ∈ (Point(dM(J)) ⟶ Point(dM(I))) supposing ∀j:names(J). ((g <j>) = (f j) ∈ Point(dM(I)))
Proof
Definitions occuring in Statement : 
dM-lift: dM-lift(I;J;f)
, 
names-hom: I ⟶ J
, 
dM_inc: <x>
, 
dM: dM(I)
, 
names: names(I)
, 
dma-hom: dma-hom(dma1;dma2)
, 
lattice-point: Point(l)
, 
fset: fset(T)
, 
nat: ℕ
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
dma-hom: dma-hom(dma1;dma2)
, 
bounded-lattice-hom: Hom(l1;l2)
, 
lattice-hom: Hom(l1;l2)
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
, 
so_lambda: λ2x.t[x]
, 
DeMorgan-algebra: DeMorganAlgebra
, 
and: P ∧ Q
, 
guard: {T}
, 
so_apply: x[s]
, 
names-hom: I ⟶ J
, 
all: ∀x:A. B[x]
Lemmas referenced : 
dM-lift-unique, 
equal_wf, 
lattice-point_wf, 
dM_wf, 
all_wf, 
names_wf, 
subtype_rel_set, 
DeMorgan-algebra-structure_wf, 
lattice-structure_wf, 
lattice-axioms_wf, 
bounded-lattice-structure-subtype, 
DeMorgan-algebra-structure-subtype, 
subtype_rel_transitivity, 
bounded-lattice-structure_wf, 
bounded-lattice-axioms_wf, 
uall_wf, 
lattice-meet_wf, 
lattice-join_wf, 
DeMorgan-algebra-axioms_wf, 
dM_inc_wf, 
dma-hom_wf, 
names-hom_wf, 
fset_wf, 
nat_wf
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
hypothesis, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
independent_isectElimination, 
setElimination, 
rename, 
hyp_replacement, 
equalitySymmetry, 
Error :applyLambdaEquality, 
functionEquality, 
applyEquality, 
because_Cache, 
sqequalRule, 
lambdaEquality, 
instantiate, 
productEquality, 
cumulativity, 
universeEquality, 
dependent_functionElimination
Latex:
\mforall{}[I,J:fset(\mBbbN{})].  \mforall{}[f:I  {}\mrightarrow{}  J].  \mforall{}[g:dma-hom(dM(J);dM(I))].
    dM-lift(I;J;f)  =  g  supposing  \mforall{}j:names(J).  ((g  <j>)  =  (f  j))
Date html generated:
2016_10_26-PM-01_05_31
Last ObjectModification:
2016_07_12-AM-09_26_52
Theory : cubical!type!theory
Home
Index