Nuprl Lemma : dM-lift-unique-fun

[I,J:fset(ℕ)]. ∀[f:I ⟶ J]. ∀[g:dma-hom(dM(J);dM(I))].
  dM-lift(I;J;f) g ∈ (Point(dM(J)) ⟶ Point(dM(I))) supposing ∀j:names(J). ((g <j>(f j) ∈ Point(dM(I)))


Proof




Definitions occuring in Statement :  dM-lift: dM-lift(I;J;f) names-hom: I ⟶ J dM_inc: <x> dM: dM(I) names: names(I) dma-hom: dma-hom(dma1;dma2) lattice-point: Point(l) fset: fset(T) nat: uimplies: supposing a uall: [x:A]. B[x] all: x:A. B[x] apply: a function: x:A ⟶ B[x] equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a dma-hom: dma-hom(dma1;dma2) bounded-lattice-hom: Hom(l1;l2) lattice-hom: Hom(l1;l2) prop: subtype_rel: A ⊆B so_lambda: λ2x.t[x] DeMorgan-algebra: DeMorganAlgebra and: P ∧ Q guard: {T} so_apply: x[s] names-hom: I ⟶ J all: x:A. B[x]
Lemmas referenced :  dM-lift-unique equal_wf lattice-point_wf dM_wf all_wf names_wf subtype_rel_set DeMorgan-algebra-structure_wf lattice-structure_wf lattice-axioms_wf bounded-lattice-structure-subtype DeMorgan-algebra-structure-subtype subtype_rel_transitivity bounded-lattice-structure_wf bounded-lattice-axioms_wf uall_wf lattice-meet_wf lattice-join_wf DeMorgan-algebra-axioms_wf dM_inc_wf dma-hom_wf names-hom_wf fset_wf nat_wf
Rules used in proof :  cut introduction extract_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation hypothesis sqequalHypSubstitution isectElimination thin hypothesisEquality independent_isectElimination setElimination rename hyp_replacement equalitySymmetry Error :applyLambdaEquality,  functionEquality applyEquality because_Cache sqequalRule lambdaEquality instantiate productEquality cumulativity universeEquality dependent_functionElimination

Latex:
\mforall{}[I,J:fset(\mBbbN{})].  \mforall{}[f:I  {}\mrightarrow{}  J].  \mforall{}[g:dma-hom(dM(J);dM(I))].
    dM-lift(I;J;f)  =  g  supposing  \mforall{}j:names(J).  ((g  <j>)  =  (f  j))



Date html generated: 2016_10_26-PM-01_05_31
Last ObjectModification: 2016_07_12-AM-09_26_52

Theory : cubical!type!theory


Home Index