Nuprl Lemma : dM-lift-unique

[I,J:fset(ℕ)]. ∀[f:I ⟶ J]. ∀[g:dma-hom(dM(J);dM(I))].
  dM-lift(I;J;f) g ∈ dma-hom(dM(J);dM(I)) supposing ∀j:names(J). ((g <j>(f j) ∈ Point(dM(I)))


Proof




Definitions occuring in Statement :  dM-lift: dM-lift(I;J;f) names-hom: I ⟶ J dM_inc: <x> dM: dM(I) names: names(I) dma-hom: dma-hom(dma1;dma2) lattice-point: Point(l) fset: fset(T) nat: uimplies: supposing a uall: [x:A]. B[x] all: x:A. B[x] apply: a equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a dM_inc: <x> dM: dM(I) names-hom: I ⟶ J dM-lift: dM-lift(I;J;f) prop: so_lambda: λ2x.t[x] subtype_rel: A ⊆B dma-hom: dma-hom(dma1;dma2) bounded-lattice-hom: Hom(l1;l2) lattice-hom: Hom(l1;l2) so_apply: x[s] all: x:A. B[x] deq: EqDecider(T) lattice-point: Point(l) record-select: r.x free-DeMorgan-algebra: free-DeMorgan-algebra(T;eq) mk-DeMorgan-algebra: mk-DeMorgan-algebra(L;n) record-update: r[x := v] ifthenelse: if then else fi  eq_atom: =a y bfalse: ff free-DeMorgan-lattice: free-DeMorgan-lattice(T;eq) free-dist-lattice: free-dist-lattice(T; eq) mk-bounded-distributive-lattice: mk-bounded-distributive-lattice mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o) btrue: tt bool: 𝔹 iff: ⇐⇒ Q and: P ∧ Q implies:  Q assert: b rev_implies:  Q squash: T DeMorgan-algebra: DeMorganAlgebra guard: {T} true: True
Lemmas referenced :  all_wf names_wf equal_wf lattice-point_wf dM_wf dM_inc_wf dma-hom_wf names-hom_wf fset_wf nat_wf free-dma-lift-unique names-deq_wf free-dml-deq_wf squash_wf true_wf subtype_rel_self subtype_rel_set DeMorgan-algebra-structure_wf lattice-structure_wf lattice-axioms_wf bounded-lattice-structure-subtype DeMorgan-algebra-structure-subtype subtype_rel_transitivity bounded-lattice-structure_wf bounded-lattice-axioms_wf uall_wf lattice-meet_wf lattice-join_wf DeMorgan-algebra-axioms_wf iff_weakening_equal
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalHypSubstitution sqequalRule hypothesis extract_by_obid isectElimination thin hypothesisEquality lambdaEquality applyEquality because_Cache setElimination rename isect_memberEquality axiomEquality equalityTransitivity equalitySymmetry dependent_functionElimination independent_isectElimination lambdaFormation imageElimination universeEquality instantiate productEquality cumulativity natural_numberEquality imageMemberEquality baseClosed productElimination independent_functionElimination

Latex:
\mforall{}[I,J:fset(\mBbbN{})].  \mforall{}[f:I  {}\mrightarrow{}  J].  \mforall{}[g:dma-hom(dM(J);dM(I))].
    dM-lift(I;J;f)  =  g  supposing  \mforall{}j:names(J).  ((g  <j>)  =  (f  j))



Date html generated: 2018_05_23-AM-08_28_27
Last ObjectModification: 2018_05_21-AM-06_40_16

Theory : cubical!type!theory


Home Index