Nuprl Lemma : free-dma-lift-unique

[T:Type]. ∀[eq:EqDecider(T)]. ∀[dm:DeMorganAlgebra]. ∀[eq2:EqDecider(Point(dm))]. ∀[f:T ⟶ Point(dm)].
[g:dma-hom(free-DeMorgan-algebra(T;eq);dm)].
  free-dma-lift(T;eq;dm;eq2;f) g ∈ dma-hom(free-DeMorgan-algebra(T;eq);dm) 
  supposing ∀i:T. ((g <i>(f i) ∈ Point(dm))


Proof




Definitions occuring in Statement :  free-dma-lift: free-dma-lift(T;eq;dm;eq2;f) free-DeMorgan-algebra: free-DeMorgan-algebra(T;eq) dma-hom: dma-hom(dma1;dma2) DeMorgan-algebra: DeMorganAlgebra dminc: <i> lattice-point: Point(l) deq: EqDecider(T) uimplies: supposing a uall: [x:A]. B[x] all: x:A. B[x] apply: a function: x:A ⟶ B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a prop: so_lambda: λ2x.t[x] subtype_rel: A ⊆B DeMorgan-algebra: DeMorganAlgebra and: P ∧ Q guard: {T} so_apply: x[s] dma-hom: dma-hom(dma1;dma2) bounded-lattice-hom: Hom(l1;l2) lattice-hom: Hom(l1;l2) all: x:A. B[x] squash: T true: True iff: ⇐⇒ Q rev_implies:  Q implies:  Q
Lemmas referenced :  all_wf equal_wf lattice-point_wf subtype_rel_set DeMorgan-algebra-structure_wf lattice-structure_wf lattice-axioms_wf bounded-lattice-structure-subtype DeMorgan-algebra-structure-subtype subtype_rel_transitivity bounded-lattice-structure_wf bounded-lattice-axioms_wf uall_wf lattice-meet_wf lattice-join_wf DeMorgan-algebra-axioms_wf dminc_wf free-dma-point-subtype dma-hom_wf free-DeMorgan-algebra_wf deq_wf DeMorgan-algebra_wf free-DeMorgan-algebra-hom-unique free-dma-lift_wf squash_wf true_wf free-dma-lift-inc iff_weakening_equal
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut hypothesis extract_by_obid sqequalHypSubstitution isectElimination thin cumulativity hypothesisEquality sqequalRule lambdaEquality applyEquality instantiate productEquality independent_isectElimination universeEquality because_Cache setElimination rename functionExtensionality isect_memberEquality axiomEquality equalityTransitivity equalitySymmetry dependent_functionElimination functionEquality setEquality lambdaFormation imageElimination natural_numberEquality imageMemberEquality baseClosed productElimination independent_functionElimination

Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].  \mforall{}[dm:DeMorganAlgebra].  \mforall{}[eq2:EqDecider(Point(dm))].
\mforall{}[f:T  {}\mrightarrow{}  Point(dm)].  \mforall{}[g:dma-hom(free-DeMorgan-algebra(T;eq);dm)].
    free-dma-lift(T;eq;dm;eq2;f)  =  g  supposing  \mforall{}i:T.  ((g  <i>)  =  (f  i))



Date html generated: 2017_10_05-AM-00_43_03
Last ObjectModification: 2017_07_28-AM-09_17_44

Theory : lattices


Home Index