Nuprl Lemma : free-DeMorgan-algebra-hom-unique

[T:Type]. ∀[eq:EqDecider(T)]. ∀[dm:DeMorganAlgebra]. ∀[eq2:EqDecider(Point(dm))].
  ∀f:T ⟶ Point(dm)
    ∀[g,h:dma-hom(free-DeMorgan-algebra(T;eq);dm)].
      h ∈ dma-hom(free-DeMorgan-algebra(T;eq);dm) supposing ∀i:T. ((g <i>(h <i>) ∈ Point(dm))


Proof




Definitions occuring in Statement :  free-DeMorgan-algebra: free-DeMorgan-algebra(T;eq) dma-hom: dma-hom(dma1;dma2) DeMorgan-algebra: DeMorganAlgebra dminc: <i> lattice-point: Point(l) deq: EqDecider(T) uimplies: supposing a uall: [x:A]. B[x] all: x:A. B[x] apply: a function: x:A ⟶ B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] uimplies: supposing a subtype_rel: A ⊆B prop: so_lambda: λ2x.t[x] DeMorgan-algebra: DeMorganAlgebra and: P ∧ Q so_apply: x[s] guard: {T} dma-hom: dma-hom(dma1;dma2) bounded-lattice-hom: Hom(l1;l2) lattice-hom: Hom(l1;l2) lattice-point: Point(l) record-select: r.x free-DeMorgan-algebra: free-DeMorgan-algebra(T;eq) mk-DeMorgan-algebra: mk-DeMorgan-algebra(L;n) record-update: r[x := v] ifthenelse: if then else fi  eq_atom: =a y bfalse: ff free-DeMorgan-lattice: free-DeMorgan-lattice(T;eq) free-dist-lattice: free-dist-lattice(T; eq) mk-bounded-distributive-lattice: mk-bounded-distributive-lattice mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o) btrue: tt dminc: <i> squash: T true: True iff: ⇐⇒ Q rev_implies:  Q implies:  Q dmopp: <1-i> top: Top lattice-meet: a ∧ b fset-ac-glb: fset-ac-glb(eq;ac1;ac2) fset-minimals: fset-minimals(x,y.less[x; y]; s) fset-filter: {x ∈ P[x]} filter: filter(P;l) reduce: reduce(f;k;as) list_ind: list_ind f-union: f-union(domeq;rngeq;s;x.g[x]) list_accum: list_accum lattice-join: a ∨ b fset-ac-lub: fset-ac-lub(eq;ac1;ac2) fset-union: x ⋃ y l-union: as ⋃ bs lattice-0: 0 empty-fset: {} nil: [] it: lattice-1: 1 fset-singleton: {x} cons: [a b]
Lemmas referenced :  free-dist-lattice-hom-unique2 union-deq_wf DeMorgan-algebra-subtype all_wf equal_wf lattice-point_wf subtype_rel_set DeMorgan-algebra-structure_wf lattice-structure_wf lattice-axioms_wf bounded-lattice-axioms_wf uall_wf lattice-meet_wf lattice-join_wf DeMorgan-algebra-axioms_wf bounded-lattice-structure-subtype DeMorgan-algebra-structure-subtype subtype_rel_transitivity bounded-lattice-structure_wf dminc_wf dma-hom_wf free-DeMorgan-algebra_wf deq_wf DeMorgan-algebra_wf free-dma-hom-is-lattice-hom squash_wf true_wf trivial-equal subtype_rel_self iff_weakening_equal free-dma-neg dm-neg-inc free-dma-point-subtype dma-neg_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lambdaFormation extract_by_obid sqequalHypSubstitution isectElimination thin unionEquality hypothesisEquality hypothesis applyEquality sqequalRule cumulativity lambdaEquality instantiate productEquality because_Cache independent_isectElimination setElimination rename isect_memberEquality axiomEquality equalityTransitivity equalitySymmetry dependent_functionElimination functionEquality universeEquality hyp_replacement unionElimination imageElimination natural_numberEquality imageMemberEquality baseClosed productElimination independent_functionElimination voidElimination voidEquality dependent_set_memberEquality

Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].  \mforall{}[dm:DeMorganAlgebra].  \mforall{}[eq2:EqDecider(Point(dm))].
    \mforall{}f:T  {}\mrightarrow{}  Point(dm)
        \mforall{}[g,h:dma-hom(free-DeMorgan-algebra(T;eq);dm)].    g  =  h  supposing  \mforall{}i:T.  ((g  <i>)  =  (h  <i>))



Date html generated: 2018_05_22-PM-09_55_43
Last ObjectModification: 2018_05_20-PM-10_14_03

Theory : lattices


Home Index