Nuprl Lemma : free-dma-point-subtype

[T:Type]. ∀[eq:EqDecider(T)].  (Point(free-DeMorgan-lattice(T;eq)) ⊆Point(free-DeMorgan-algebra(T;eq)))


Proof




Definitions occuring in Statement :  free-DeMorgan-algebra: free-DeMorgan-algebra(T;eq) free-DeMorgan-lattice: free-DeMorgan-lattice(T;eq) lattice-point: Point(l) deq: EqDecider(T) subtype_rel: A ⊆B uall: [x:A]. B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T top: Top subtype_rel: A ⊆B bdd-distributive-lattice: BoundedDistributiveLattice so_lambda: λ2x.t[x] prop: and: P ∧ Q so_apply: x[s] uimplies: supposing a
Lemmas referenced :  free-dma-point subtype_rel_self lattice-point_wf free-DeMorgan-lattice_wf subtype_rel_set bounded-lattice-structure_wf lattice-structure_wf lattice-axioms_wf bounded-lattice-structure-subtype bounded-lattice-axioms_wf uall_wf equal_wf lattice-meet_wf lattice-join_wf deq_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity cut lemma_by_obid sqequalHypSubstitution sqequalTransitivity computationStep isectElimination thin isect_memberEquality voidElimination voidEquality hypothesis isect_memberFormation introduction cumulativity hypothesisEquality applyEquality instantiate lambdaEquality productEquality universeEquality because_Cache independent_isectElimination axiomEquality

Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].
    (Point(free-DeMorgan-lattice(T;eq))  \msubseteq{}r  Point(free-DeMorgan-algebra(T;eq)))



Date html generated: 2016_05_18-AM-11_49_01
Last ObjectModification: 2015_12_28-PM-01_55_16

Theory : lattices


Home Index