Nuprl Lemma : free-dma-lift-inc

T:Type. ∀eq:EqDecider(T). ∀dm:DeMorganAlgebra. ∀eq2:EqDecider(Point(dm)). ∀f:T ⟶ Point(dm). ∀i:T.
  ((free-dma-lift(T;eq;dm;eq2;f) <i>(f i) ∈ Point(dm))


Proof




Definitions occuring in Statement :  free-dma-lift: free-dma-lift(T;eq;dm;eq2;f) DeMorgan-algebra: DeMorganAlgebra dminc: <i> lattice-point: Point(l) deq: EqDecider(T) all: x:A. B[x] apply: a function: x:A ⟶ B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T uall: [x:A]. B[x] so_lambda: λ2x.t[x] dma-hom: dma-hom(dma1;dma2) bounded-lattice-hom: Hom(l1;l2) lattice-hom: Hom(l1;l2) subtype_rel: A ⊆B so_apply: x[s] prop: implies:  Q squash: T true: True uimplies: supposing a guard: {T} iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q DeMorgan-algebra: DeMorganAlgebra
Lemmas referenced :  free-dma-lift_wf set_wf dma-hom_wf free-DeMorgan-algebra_wf all_wf equal_wf dminc_wf free-dma-point-subtype squash_wf true_wf iff_weakening_equal lattice-point_wf subtype_rel_set DeMorgan-algebra-structure_wf lattice-structure_wf lattice-axioms_wf bounded-lattice-structure-subtype DeMorgan-algebra-structure-subtype subtype_rel_transitivity bounded-lattice-structure_wf bounded-lattice-axioms_wf uall_wf lattice-meet_wf lattice-join_wf DeMorgan-algebra-axioms_wf deq_wf DeMorgan-algebra_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin cumulativity hypothesisEquality functionExtensionality applyEquality hypothesis isectElimination because_Cache sqequalRule lambdaEquality setElimination rename imageElimination equalityTransitivity equalitySymmetry natural_numberEquality imageMemberEquality baseClosed universeEquality independent_isectElimination productElimination independent_functionElimination functionEquality instantiate productEquality

Latex:
\mforall{}T:Type.  \mforall{}eq:EqDecider(T).  \mforall{}dm:DeMorganAlgebra.  \mforall{}eq2:EqDecider(Point(dm)).  \mforall{}f:T  {}\mrightarrow{}  Point(dm).  \mforall{}i:T.
    ((free-dma-lift(T;eq;dm;eq2;f)  <i>)  =  (f  i))



Date html generated: 2017_10_05-AM-00_42_52
Last ObjectModification: 2017_07_28-AM-09_17_33

Theory : lattices


Home Index