Nuprl Lemma : csm+_wf_interval
∀[H,K:j⊢]. ∀[tau:K j⟶ H].  (tau+ ∈ K.𝕀 j⟶ H.𝕀)
Proof
Definitions occuring in Statement : 
interval-type: 𝕀
, 
csm+: tau+
, 
cube-context-adjoin: X.A
, 
cube_set_map: A ⟶ B
, 
cubical_set: CubicalSet
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
subtype_rel: A ⊆r B
Lemmas referenced : 
csm+_wf, 
interval-type_wf, 
csm-interval-type, 
cube_set_map_wf, 
cubical_set_wf, 
cube-context-adjoin_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
cut, 
thin, 
instantiate, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
hypothesisEquality, 
hypothesis, 
applyEquality, 
sqequalRule, 
Error :memTop, 
universeIsType, 
inhabitedIsType, 
lambdaEquality_alt
Latex:
\mforall{}[H,K:j\mvdash{}].  \mforall{}[tau:K  j{}\mrightarrow{}  H].    (tau+  \mmember{}  K.\mBbbI{}  j{}\mrightarrow{}  H.\mBbbI{})
Date html generated:
2020_05_20-PM-02_38_08
Last ObjectModification:
2020_04_20-AM-10_13_17
Theory : cubical!type!theory
Home
Index