Nuprl Lemma : csm+_wf_interval

[H,K:j⊢]. ∀[tau:K j⟶ H].  (tau+ ∈ K.𝕀 j⟶ H.𝕀)


Proof




Definitions occuring in Statement :  interval-type: 𝕀 csm+: tau+ cube-context-adjoin: X.A cube_set_map: A ⟶ B cubical_set: CubicalSet uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T subtype_rel: A ⊆B
Lemmas referenced :  csm+_wf interval-type_wf csm-interval-type cube_set_map_wf cubical_set_wf cube-context-adjoin_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt cut thin instantiate introduction extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality hypothesis applyEquality sqequalRule Error :memTop,  universeIsType inhabitedIsType lambdaEquality_alt

Latex:
\mforall{}[H,K:j\mvdash{}].  \mforall{}[tau:K  j{}\mrightarrow{}  H].    (tau+  \mmember{}  K.\mBbbI{}  j{}\mrightarrow{}  H.\mBbbI{})



Date html generated: 2020_05_20-PM-02_38_08
Last ObjectModification: 2020_04_20-AM-10_13_17

Theory : cubical!type!theory


Home Index