Nuprl Lemma : csm+_wf

[H,K:j⊢]. ∀[A:{H ⊢ _}]. ∀[tau:K j⟶ H].  (tau+ ∈ K.(A)tau ij⟶ H.A)


Proof




Definitions occuring in Statement :  csm+: tau+ cube-context-adjoin: X.A csm-ap-type: (AF)s cubical-type: {X ⊢ _} cube_set_map: A ⟶ B cubical_set: CubicalSet uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T cubical_set: CubicalSet cube_set_map: A ⟶ B cube-context-adjoin: X.A psc-adjoin: X.A I_cube: A(I) I_set: A(I) cubical-type-at: A(a) presheaf-type-at: A(a) csm-ap-type: (AF)s pscm-ap-type: (AF)s csm-ap: (s)x pscm-ap: (s)x cube-set-restriction: f(s) psc-restriction: f(s) cubical-type-ap-morph: (u f) presheaf-type-ap-morph: (u f) csm+: tau+ pscm+: tau+ csm-adjoin: (s;u) pscm-adjoin: (s;u) csm-comp: F pscm-comp: F cc-fst: p psc-fst: p cc-snd: q psc-snd: q
Lemmas referenced :  pscm+_wf cube-cat_wf cubical-type-sq-presheaf-type
Rules used in proof :  cut introduction extract_by_obid sqequalHypSubstitution sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isectElimination thin hypothesis sqequalRule Error :memTop

Latex:
\mforall{}[H,K:j\mvdash{}].  \mforall{}[A:\{H  \mvdash{}  \_\}].  \mforall{}[tau:K  j{}\mrightarrow{}  H].    (tau+  \mmember{}  K.(A)tau  ij{}\mrightarrow{}  H.A)



Date html generated: 2020_05_20-PM-01_58_04
Last ObjectModification: 2020_04_21-AM-11_23_07

Theory : cubical!type!theory


Home Index